首页> 外文期刊>Applied Physics Letters >Band gap widening at random CIGS grain boundary detected by valence electron energy loss spectroscopy
【24h】

Band gap widening at random CIGS grain boundary detected by valence electron energy loss spectroscopy

机译:价电子能量损失谱检测CIGS随机晶界带隙加宽

获取原文
获取原文并翻译 | 示例
       

摘要

Cu(In,Ga) Se_2 (CIGS) thin film solar cells have demonstrated very high efficiencies, but still the role of nanoscale inhomogeneities in CIGS and their impact on the solar cell performance are not yet clearly understood. Due to the polycrystalline structure of CIGS, grain boundaries are very common structural defects that are also accompanied by compositional variations. In this work, we apply valence electron energy loss spectroscopy in scanning transmission electron microscopy to study the local band gap energy at a grain boundary in the CIGS absorber layer. Based on this example, we demonstrate the capabilities of a 2nd generation monochromator that provides a very high energy resolution and allows for directly relating the chemical composition and the band gap energy across the grain boundary. A band gap widening of about 20meV is observed at the grain boundary. Furthermore, the compositional analysis by core-loss EELS reveals an enrichment of In together with a Cu, Ga and Se depletion at the same area. The experimentally obtained results can therefore be well explained by the presence of a valence band barrier at the grain boundary.
机译:Cu(In,Ga)Se_2(CIGS)薄膜太阳能电池已显示出非常高的效率,但仍不清楚CIGS中纳米级不均匀性的作用及其对太阳能电池性能的影响。由于CIGS的多晶结构,晶界是非常常见的结构缺陷,还伴随着成分变化。在这项工作中,我们将价电子能量损失谱应用于扫描透射电子显微镜,以研究CIGS吸收层中晶界处的局部带隙能。基于此示例,我们演示了第二代单色仪的功能,该功能提供了非常高的能量分辨率,并允许将化学成分和整个晶界的带隙能量直接关联起来。在晶界处观察到约20meV的带隙变宽。此外,通过磁芯损耗EELS进行的成分分析显示,同一区域内In的富集以及Cu,Ga和Se的耗尽。因此,通过在晶界处存在价带势垒可以很好地解释实验获得的结果。

著录项

  • 来源
    《Applied Physics Letters》 |2016年第15期|153103.1-153103.4|共4页
  • 作者单位

    Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf, Switzerland ,Electron Microscopy Center, Empa - Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf, Switzerland;

    Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf, Switzerland;

    Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf, Switzerland;

    Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf, Switzerland;

    Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf, Switzerland;

    Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf, Switzerland;

    SuperSTEM Laboratory, SciTech Daresbury Campus, Keckwick Lane, Daresbury WA4 4AD, United Kingdom;

    SuperSTEM Laboratory, SciTech Daresbury Campus, Keckwick Lane, Daresbury WA4 4AD, United Kingdom;

    Electron Microscopy Center, Empa - Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf, Switzerland;

    Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf, Switzerland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:14:48

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号