首页> 外文期刊>Applied Physics Letters >Critical heat flux maxima resulting from the controlled morphology of nanoporous hydrophilic surface layers
【24h】

Critical heat flux maxima resulting from the controlled morphology of nanoporous hydrophilic surface layers

机译:临界热通量最大值是由纳米多孔亲水表面层的受控形貌导致的

获取原文
获取原文并翻译 | 示例
       

摘要

Porous hydrophilic surfaces have been shown to enhance the critical heat flux (CHF) in boiling heat transfer. In this work, the separate effects of pore size and porous layer thickness on the CHF of saturated water at atmospheric pressure were experimentally investigated using carefully engineered surfaces. It was shown that, for a fixed pore diameter (~20nm), there is an optimum layer thickness (~2μm), for which the CHF value is maximum, corresponding to ~115% enhancement over the value for uncoated surfaces. Similarly, a maximum CHF value (~100% above the uncoated surface CHF) was observed while changing the pore size at a constant layer thickness (~/μm). To explain these CHF maxima, we propose a mechanistic model that can capture the effect of pore size and pore thickness on CHF. The good agreement found between the model and experimental data supports the hypothesis that CHF is governed by the competition between capillary wicking, viscous pressure drop and evaporation, as well as conduction heat transfer within the porous layer. The model can be used to guide the development of engineered surfaces with superior boiling performance.
机译:多孔亲水表面已经显示出可以提高沸腾传热中的临界热通量(CHF)。在这项工作中,使用精心设计的表面,通过实验研究了孔径和多孔层厚度对大气压下饱和水的CHF的单独影响。结果表明,对于固定的孔径(〜20nm),有一个最佳的层厚度(〜2μm),CHF值最大,对应于未涂层表面的〜115%增强。类似地,在以恒定的层厚(〜/μm)改变孔径的同时,观察到最大CHF值(比未涂层表面CHF高约100%)。为了解释这些CHF最大值,我们提出了一个机制模型,该模型可以捕获孔径和孔径对CHF的影响。模型与实验数据之间的良好一致性支持以下假设:CHF受毛细管芯吸,粘性压降和蒸发以及多孔层内的传导传热之间的竞争支配。该模型可用于指导具有出色沸腾性能的工程表面的开发。

著录项

  • 来源
    《Applied Physics Letters》 |2016年第24期|243102.1-243102.4|共4页
  • 作者单位

    Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;

    Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;

    Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;

    Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;

    Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;

    Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;

    Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:14:40

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号