首页> 外文期刊>Applied Physics Letters >Partial spin absorption induced magnetization switching and its voltage-assisted improvement in an asymmetrical all spin logic device at the mesoscopic scale
【24h】

Partial spin absorption induced magnetization switching and its voltage-assisted improvement in an asymmetrical all spin logic device at the mesoscopic scale

机译:非对称全自旋逻辑器件介观尺度上的部分自旋吸收引起的磁化切换及其电压辅助改进

获取原文
获取原文并翻译 | 示例
       

摘要

Beyond memory and storage, future logic applications put forward higher requirements for electronic devices. All spin logic devices (ASLDs) have drawn exceptional interest as they utilize pure spin current instead of charge current, which could promise ultra-low power consumption. However, relatively low efficiencies of spin injection, transport, and detection actually impede high-speed magnetization switching and challenge perspectives of ASLD. In this work, we study partial spin absorption induced magnetization switching in asymmetrical ASLD at the mesoscopic scale, in which the injector and detector have the nano-fabrication compatible device size (>100nm) and their contact areas are different. The enlarged contact area of the detector is conducive to the spin current absorption, and the contact resistance difference between the injector and the detector can decrease the spin current backflow. Rigorous spin circuit modeling and micromag-netic simulations have been carried out to analyze the electrical and magnetic features. The results show that, at the fabrication-oriented technology scale, the ferromagnetic layer can hardly be switched by geometrically partial spin current absorption. The voltage-controlled magnetic anisot-ropy (VCMA) effect has been applied on the detector to accelerate the magnetization switching by modulating magnetic anisotropy of the ferromagnetic layer. With a relatively high VCMA coefficient measured experimentally, a voltage of 1.68 V can assist the whole magnetization switching within 2.8 ns. This analysis and improving approach will be of significance for future low-power, high-speed logic applications.
机译:除了存储器和存储,未来的逻辑应用对电子设备提出了更高的要求。由于所有自旋逻辑器件(ASLD)利用纯自旋电流而不是充电电流,因此引起了人们的极大兴趣,这可以保证超低功耗。但是,自旋注入,传输和检测的效率相对较低,实际上阻碍了高速磁化转换,并挑战了ASLD的观点。在这项工作中,我们在介观尺度上研究了不对称ASLD中部分自旋吸收引起的磁化转换,其中注入器和检测器具有纳米加工兼容的器件尺寸(> 100nm),并且它们的接触面积不同。检测器的增大的接触面积有利于自旋电流的吸收,并且喷射器与检测器之间的接触电阻差可以减小自旋电流的回流。已经进行了严格的自旋电路建模和微磁仿真来分析电气和磁性特征。结果表明,在面向制造技术的规模上,铁磁层几乎不能通过几何部分自旋电流吸收来切换。电压控制的磁各向异性(VCMA)效应已应用于检测器,以通过调制铁磁层的磁各向异性来加速磁化切换。通过实验测量的较高VCMA系数,1.68 V的电压可在2.8 ns内协助整个磁化切换。这种分析和改进方法对于未来的低功耗,高速逻辑应用将具有重要意义。

著录项

  • 来源
    《Applied Physics Letters》 |2017年第5期|052407.1-052407.5|共5页
  • 作者单位

    Fert Beijing Research Institute, BDBC, Beihang University, Beijing 100191, China,School of Electrical and Information Engineering, Beihang University, Beijing 100191, China;

    Fert Beijing Research Institute, BDBC, Beihang University, Beijing 100191, China,School of Electrical and Information Engineering, Beihang University, Beijing 100191, China;

    Fert Beijing Research Institute, BDBC, Beihang University, Beijing 100191, China,School of Electrical and Information Engineering, Beihang University, Beijing 100191, China,Department of Electrical Engineering, University of California, Los Angeles, California 90095, USA;

    Fert Beijing Research Institute, BDBC, Beihang University, Beijing 100191, China,School of Electrical and Information Engineering, Beihang University, Beijing 100191, China;

    Fert Beijing Research Institute, BDBC, Beihang University, Beijing 100191, China,School of Electrical and Information Engineering, Beihang University, Beijing 100191, China;

    Department of Electrical Engineering, University of California, Los Angeles, California 90095, USA;

    Department of Electrical Engineering, University of California, Los Angeles, California 90095, USA;

    Fert Beijing Research Institute, BDBC, Beihang University, Beijing 100191, China,School of Electrical and Information Engineering, Beihang University, Beijing 100191, China;

    Centre for Nanoscience and Nanotechnology, University of Paris-Sud, University of Paris-Saclay, CNRS, Orsay 91405, France;

    Department of Electrical Engineering, University of California, Los Angeles, California 90095, USA;

    Fert Beijing Research Institute, BDBC, Beihang University, Beijing 100191, China,School of Electrical and Information Engineering, Beihang University, Beijing 100191, China;

    Department of Electrical Engineering, University of California, Los Angeles, California 90095, USA;

    Fert Beijing Research Institute, BDBC, Beihang University, Beijing 100191, China,School of Electrical and Information Engineering, Beihang University, Beijing 100191, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:14:11

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号