首页> 外文期刊>Applied Physics Letters >Electromechanical scale-bridging model for piezoelectric nanostructures
【24h】

Electromechanical scale-bridging model for piezoelectric nanostructures

机译:压电纳米结构的机电尺度桥接模型

获取原文
获取原文并翻译 | 示例
       

摘要

In past experimental studies, piezoelectric nanostructures have exhibited extraordinary behavior and unusual deformations. In order to establish the corresponding theoretical framework, a scale-bridging model, which takes into account surface piezoelectricity and the wave nature of electrons in ultra-narrow media by reflecting lattice distortions of atomic structures, has been proposed in this work. After applying this model to ZnO nanofilms with thicknesses ranging between 0.3 nm and 2.8 nm, asymmetric lattice distortions of the Zn- and O-terminated surfaces were observed and subsequently quantified using a lattice distortion factor. The material characteristics evaluated by using this model were found to be in good agreement with the results of first-principles calculations and corresponding experiments, and thus can be used for predicting the properties of thicker nanofilms. After bridging to the continuum scale, the data produced via finite element analysis significantly differed from the results obtained by the conventional model, owing to the unusual deformations caused by the nano-sized material properties and asymmetric surface characteristics. The obtained results help to achieve a better understanding of the properties of piezoelectric nanostructures with extraordinary characteristics and, therefore, can be used for the nanostructural design.
机译:在过去的实验研究中,压电纳米结构表现出非凡的行为和非凡的变形。为了建立相应的理论框架,在这项工作中提出了一种尺度桥接模型,该模型通过反射原子结构的晶格畸变来考虑超窄介质中的表面压电性和电子的波动特性。在将此模型应用于厚度介于0.3 nm和2.8 nm之间的ZnO纳米膜后,观察到Zn和O端接表面的不对称晶格畸变,随后使用晶格畸变因子进行量化。发现使用该模型评估的材料特性与第一性原理计算和相应的实验结果吻合良好,因此可用于预测较厚的纳米膜的性能。桥接至连续尺度后,由于纳米级材料特性和不对称表面特性引起的异常变形,通过有限元分析生成的数据与常规模型的结果显着不同。获得的结果有助于更好地理解具有非凡特性的压电纳米结构的性能,因此可用于纳米结构设计。

著录项

  • 来源
    《Applied Physics Letters》 |2017年第1期|013104.1-013104.5|共5页
  • 作者单位

    Department of Mechanical and Aerospace Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea;

    Department of Mechanical and Aerospace Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea,Department of Materials Science and Engineering and Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, USA;

    Department of Mechanical and Aerospace Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:13:56

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号