首页> 外文期刊>Applied Mechanics and Materials >Comparison of Spherical and Non-Spherical Objects in Cyclonic and Uniaxial Flow Regimes
【24h】

Comparison of Spherical and Non-Spherical Objects in Cyclonic and Uniaxial Flow Regimes

机译:旋流和单轴流态下球形和非球形物体的比较

获取原文
获取原文并翻译 | 示例
           

摘要

This paper uses the Muschelknautz method to model the cyclone separation of chestnut shell and kernel fragments simulated as a square plate and sphere respectively. Because of the opposing geometry of the kernel and shell particles, a new framework is derived using CFD simulations to predict the drag coefficient of the shell particle as a function of orientation and Reynolds number. The drag coefficient of the shell is approximately proportional to the sine of the orientation angle, squared. Despite this, particle orientation remains relatively constant for all practical geometric and velocity parameters within a cyclone, as implied by the assumptions used in this paper. The results from the separation model show that the tangential velocity is almost 86 times greater than the radial velocity of the particle beneath the vortex finder. Consequently, the full frontal area of the particle is not exposed to the radial flow and the particles are not separated effectively by drag force. An experimental separation efficiency of 28.5% compared to an efficiency of 0% predicted by classical cyclone theory, indicates that the shell particles could be re-entrained at the base of the cyclone. This suggests that cyclones do not utilise the differences in drag between particles. The simulation of chestnut kernel and shell particles in a uniaxial flow field (such as occurs in pneumatic separation) shows that it is theoretically possible to achieve a significantly larger separation efficiency when compared to cyclones.
机译:本文采用Muschelknautz方法对板栗壳和核碎片的旋风分离进行建模,分别模拟为正方形板和球形。由于核和壳粒子的几何形状相对,因此使用CFD模拟得出了一个新的框架,以预测壳粒子的阻力系数作为方向和雷诺数的函数。壳体的阻力系数与定向角的正弦近似成平方。尽管如此,正如本文中使用的假设所暗示的那样,对于旋风分离器内的所有实际几何参数和速度参数,粒子方向仍保持相对恒定。分离模型的结果表明,切向速度几乎是涡流探测器下方粒子径向速度的86倍。因此,颗粒的整个正面区域没有暴露于径向流,并且颗粒没有通过阻力有效地分离。实验分离效率为28.5%,而传统旋风理论预测的效率为0%,表明壳颗粒可以在旋风分离器的底部重新夹带。这表明旋风分离器不利用颗粒之间的阻力差异。对单轴流场中栗子仁和壳颗粒的模拟(例如在气动分离中发生)表明,与旋风分离器相比,理论上有可能实现明显更大的分离效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号