首页> 外文期刊>Applied Mathematical Modelling >Subcritical and critical states of a crack with failure zones
【24h】

Subcritical and critical states of a crack with failure zones

机译:具有破坏区域的裂纹的亚临界和临界状态

获取原文
获取原文并翻译 | 示例
       

摘要

The problem on the stress-strain state near a mode I crack in an infinite plate is solved in the frame of a cohesive zone model. The complex variable method of Muskhelishvili is used to obtain the crack opening displacements caused by the cohesive traction, which models the failure zone at the crack tip, as well as by the external load. The finite stress condition and logarithmic singularity of the derivative of the separation with respect to the coordinate at the tip of a physical crack are taken into account.The cohesive traction distribution is sought in a piecewise linear form, nodal values of which are being numerically chosen to satisfy the traction-separation law. According to this law, the cohesive traction is coupled with the corresponding separation and fracture toughness. The tips of the physical crack and cohesive zone (geometric variables) along with the discrete cohesive traction are used as the problem parameters determining the stress-strain state. If the crack length is included in the set, then the critical crack size can be found for the given loading intensity.The obtained determining system of equations is solved numerically. To find the initial point for a standard numerical algorithm, the asymptotic determining system is derived. In this system, the geometric variables can be easily eliminated, which make it possible to linearize the system.In the numerical examples, the one-parameter traction-separation laws are used. Influence of the shape parameters of the law on the critical crack size and the corresponding cohesive length is studied. The possibility of using asymptotic solutions for determining the critical parameters is analysed. It is established that the critical crack length slightly depends on the shape parameter, while the cohesive length shows a strong dependence on the shape of cohesive laws. (C) 2019 Elsevier Inc. All rights reserved.
机译:在内聚区模型的框架内,解决了无限板中I型裂纹附近的应力-应变状态问题。使用Muskhelishvili的复变量方法来获得由内聚力引起的裂纹开口位移,该位移模拟了裂纹尖端的破坏区域以及外部载荷。考虑了分离应力导数相对于物理裂纹尖端坐标的有限应力条件和对数奇异性。以分段线性形式寻找内聚牵引力分布,并通过数值选择节点值满足牵引分离定律。根据该定律,内聚牵引力与相应的分离和断裂韧性相结合。物理裂缝和内聚区的尖端(几何变量)以及不连续的内聚力被用作确定应力应变状态的问题参数。如果裂纹长度包含在集合中,则可以在给定的载荷强度下找到临界裂纹尺寸。将获得的方程式确定系统进行数值求解。为了找到标准数值算法的起始点,导出了渐近确定系统。在该系统中,可以轻松消除几何变量,从而可以使系统线性化。在数值示例中,使用了一参数牵引分离法则。研究了定律的形状参数对临界裂纹尺寸和相应的内聚长度的影响。分析了使用渐近解来确定关键参数的可能性。可以确定的是,临界裂纹长度略微取决于形状参数,而内聚长度则显示出对内聚规律形状的强烈依赖性。 (C)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号