首页> 外文期刊>Applied Mathematical Modelling >Investigation of the effect of cavitation passive control on the dynamics of unsteady cloud cavitation
【24h】

Investigation of the effect of cavitation passive control on the dynamics of unsteady cloud cavitation

机译:空化被动控制对非稳态云空化动力学影响的研究

获取原文
获取原文并翻译 | 示例
       

摘要

We present an efficient method to control the evolution of unsteady cloud cavitation around the CAV2003 benchmark hydrofoil using passive cavitation controllers so called cavitation-bubble generators (CGs). Cavitation control may be used in many engineering applications, particularly in the marine and turbo machinery field. We first simulated the unsteady cavitating flow around the hydrofoil without CGs using a Partially-averaged Navier-Stokes (PANS) method, and validated the acquired results against experimental data. We coupled the turbulence model with a mass transfer model and successfully implemented it in the open source toolbox OpenFOAM. Next, we studied the effect of different CGs on the qualitative parameters, such as the cavitation structure and the cavity shape. We varied size and location of the CGs to find the proper control of the cloud cavitation. We also analyzed in detail the effect of CGs on various destructive mechanisms of cavitation, such as highly unsteady cloud cavitation, turbulent velocity fluctuations, wall pressure peaks, and degrading hydrodynamic performances. Our results revealed that CGs can substantially reduce instantaneous high-pressure pulsations on the hydrofoil surface. We observed that the cyclic behavior of unsteady cloud cavitation was suppressed, and the hydrodynamic efficiency of the hydrofoil was increased. The local boundary layer on the hydrofoil surface was altered, and the turbulent velocity fluctuation was reduced significantly, confirming that the vortex structures on the suction side and the wake region of the hydrofoil were changed remarkably. (C) 2018 Elsevier Inc. All rights reserved.
机译:我们提出了一种有效的方法,可使用称为“空化气泡发生器”(CGs)的无源空化控制器来控制CAV2003基准水翼周围的不稳定云空化的演变。空化控制可用于许多工程应用中,尤其是在船舶和涡轮机械领域。我们首先使用部分平均的Navier-Stokes(PANS)方法模拟了没有CG的水翼周围的非定常空化流,并针对实验数据验证了获得的结果。我们将湍流模型与传质模型耦合在一起,并在开源工具箱OpenFOAM中成功实现了该模型。接下来,我们研究了不同CG对定性参数(如空化结构和空腔形状)的影响。我们改变了CG的大小和位置,以找到对云空化的适当控制。我们还详细分析了CG对空化的各种破坏机制的影响,例如高度不稳定的云空化,湍流速度波动,壁面压力峰值和水动力性能下降。我们的结果表明,CGs可以大大减少水翼表面的瞬时高压脉动。我们观察到不稳定的云空化的循环行为被抑制,并且水翼的流体动力效率增加。改变了水翼表面的局部边界层,湍流速度波动显着减小,证实了水翼的吸力侧和尾流区域的涡流结构发生了显着变化。 (C)2018 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号