首页> 外文期刊>Applied Mathematical Modelling >Towards a coupled multi-scale, multi-physics simulation framework for aluminium electrolysis
【24h】

Towards a coupled multi-scale, multi-physics simulation framework for aluminium electrolysis

机译:建立铝电解的多尺度,多物理场耦合模拟框架

获取原文
获取原文并翻译 | 示例
       

摘要

Aluminium metal production through electrolytic reduction of alumina in a cryolite bath is a complex, multi-physics, multi-scale process, including magneto-hydrodynamics (MHD), bubble flow, thermal convection, melting and solidification phenomena based on a set of chemical reactions. Through interactions of the different forces applied to the liquid bath combined with the different time and length scales, self-organised fluctuations occur. Moreover, the MHD behaviour causes a complex metal pad profile and a series of surface waves due to the meta-stable condition of the metal/cryolite interface. The large aspect ratio of an industrial cell, with a footprint of 20 by 4 m and at the same time having dimensions approaching just 30 mm of height for the reaction zone, prevents an integrated approach where all relevant physics are included in a single mathematical model of this large degree of freedom system. In order to overcome these challenges, different modelling approaches have been established in ANSYS~® FLUENT~®; Three models are used to predict details of specific physics: one to predict the electro-magnetic forces and hence the metal pad profile, a second that resolves details of the local bubble dynamics around a single anode and a third for the full cell bath flow. Results from these models are coupled to allow integration of the different phenomena into a full cell alumina distribution model. The current paper outlines each of the approaches and presents how the coupling between them can be realized in a complete framework, aiming to provide new insight into the process.
机译:通过在冰晶石浴中电解还原氧化铝来生产铝金属是一个复杂的,多物理场的,多规模的过程,包括基于一组化学反应的磁流体力学(MHD),气泡流动,热对流,熔化和凝固现象。通过施加到液浴的不同力的相互作用以及不同的时间和长度刻度,会发生自组织的波动。此外,由于金属/冰晶石界面的亚稳态条件,MHD行为会导致复杂的金属焊盘轮廓和一系列表面波。工业电池的宽高比大,占地20 x 4 m,同时反应区的尺寸仅接近30 mm,避免了将所有相关物理都包含在一个数学模型中的集成方法自由度很大的系统为了克服这些挑战,ANSYS〜®FLUENT〜®建立了不同的建模方法。三种模型用于预测特定物理的细节:一种模型用于预测电磁力以及金属垫的轮廓,第二种模型用于解析单个阳极周围的局部气泡动力学的细节,第三种模型用于整个电池槽的流动。这些模型的结果被耦合以允许将不同的现象整合到一个完整的氧化铝分布模型中。本白皮书概述了每种方法,并介绍了如何在一个完整的框架中实现它们之间的耦合,旨在提供对该过程的新见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号