首页> 外文期刊>Applied Energy >Thermodynamic analysis of a hard coal oxyfuel power plant with hightemperature three-end membrane for air separation
【24h】

Thermodynamic analysis of a hard coal oxyfuel power plant with hightemperature three-end membrane for air separation

机译:具有高温三端膜的空气分离硬煤制氧燃料电厂的热力学分析

获取原文
获取原文并翻译 | 示例
       

摘要

Cryogenic air separation is a mature state-of-the-art technology to produce the high tonnage of oxygen required for oxyfuel power plants. However, this technology represents an important burden to the net plant efficiency (losses between 8% and 12%-points). High temperature ceramic membranes, associated with significantly lower efficiency losses, are foreseen as the best candidate to challenge cryogenics for high tonnage oxygen production. Although this technology is still at an embryonic state of development, the three-end membrane operation mode offers important technical advantages over the four-end mode that can be a good technological option in the near future. This paper analyzes the influence of both, the cryogenic and three-end high temperature membrane air separation units on the net oxyfuel plant efficiency considering the same boundary conditions and different equivalent thermal integrations. Moreover, the oxygen permeation rate, heat recovery, and required membrane area are also evaluated at different membrane operating conditions. Using a state-of-the-art perovskite BSCF as membrane material, net plant efficiency losses up to 5.1%-points can be reached requiring around 400,000 m_2 of membrane area. Applying this membrane-based technology it is possible to improve the oxyfuel plant efficiency over 4%-points (compared with cryogenic technology); however, it is still necessary to develop new ceramic materials to reduce the amount of membrane area required.
机译:低温空气分离是一种成熟的先进技术,可产生含氧燃料发电厂所需的高吨位氧气。但是,这项技术对净工厂效率构成了重要负担(损失在8%至12%点之间)。可以预见,与效率损失显着降低相关的高温陶瓷膜将成为挑战低温法生产高吨位氧气的最佳人选。尽管该技术仍处于发展的萌芽状态,但三端膜操作模式比四端模式具有重要的技术优势,而四端模式在不久的将来可能是很好的技术选择。本文分析了在相同边界条件和不同等效热积分的情况下,低温和三端高温膜式空气分离装置对含氧燃料装置净效率的影响。此外,还可以在不同的膜操作条件下评估氧气的渗透率,热回收率和所需的膜面积。使用最先进的钙钛矿BSCF作为膜材料,需要约400,000 m_2的膜面积才能达到净工厂效率损失高达5.1%-points。应用这种基于膜的技术,可以将含氧燃料装置的效率提高4%以上(与低温技术相比);然而,仍然有必要开发新的陶瓷材料以减少所需的膜面积。

著录项

  • 来源
    《Applied Energy》 |2011年第5期|p.1480-1493|共14页
  • 作者

    Renzo Castillo;

  • 作者单位

    Institute of Energy and Climate Research IEK-STE, Systems Analysis and Technology Evaluation, Forschungszentrum Julich. 52425 Julich, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    oxyfuel; m1ec membranes; carbon capture and storage; cryogenics; air separation unit;

    机译:含氧燃料;m1ec膜;碳捕集与封存;低温;空气分离装置;
  • 入库时间 2022-08-18 00:10:04

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号