首页> 外文期刊>Applied Energy >Numerical simulation study on discharging process of the direct-contact phase change energy storage system
【24h】

Numerical simulation study on discharging process of the direct-contact phase change energy storage system

机译:直接接触式相变储能系统放电过程的数值模拟研究

获取原文
获取原文并翻译 | 示例
           

摘要

The mobilized thermal energy storage system (M-TES) has been demonstrated as a promising technology to supply heat using waste heat in industries to distributed users, where heat discharging determines whether M-TES system can satisfy the required heating rate. The objective of this work is to investigate the solidification mechanism of phase change materials (PCM) for heat discharging in a direct-contact thermal energy storage (TES) container for M-TES. A 2-dimensional (2D) numerical simulation model of the TES tank is developed in ANSYS FLUENT, and validated with the experimental measurement. Effects of flow rate and inlet temperature of heat transfer oil (HTO) were studied. Results show that (a) the discharging process includes the formation of solidified PCM followed by the sinking of solidified PCM; (b) the discharging time of M-TES can be reduced by increasing the flow rate of heat transfer oil. When the flow rate is increased from 0.46 m(3)/h to 0.92 m(3)/h, the solidified PCM is increased from 25 vol.% to 90 vol.% within 30 min; (c) the discharging time can be reduced by decreasing the inlet temperature of HTO. While the inlet temperature is reduced from 50 degrees C to 30 degrees C, the solidified PCM is increased from 60 vol.% to 90 vol.% within 30 min. This work provides engineering insights for the rational design of discharging process for M-TES system. (C) 2015 Elsevier Ltd. All rights reserved.
机译:事实证明,移动式热能存储系统(M-TES)是一种有前途的技术,可以利用工业中的余热为分布式用户提供热量,其中热量的释放决定了M-TES系统是否可以满足所需的加热速率。这项工作的目的是研究用于M-TES的直接接触式热能存储(TES)容器中用于散热的相变材料(PCM)的固化机理。在ANSYS FLUENT中开发了TES储罐的二维(2D)数值模拟模型,并通过实验测量进行了验证。研究了传热油(HTO)的流量和入口温度的影响。结果表明:(a)排放过程包括凝固的PCM的形成,然后凝固的PCM的下沉; (b)通过增加传热油的流量可以减少M-TES的排放时间。当流速从0.46 m(3)/ h增加到0.92 m(3)/ h时,固化的PCM在30分钟内从25%(体积)增加到90%(体积); (c)可以通过降低HTO的入口温度来减少放电时间。在入口温度从50摄氏度降低到30摄氏度的同时,固化的PCM在30分钟内从60%(体积)增加到90%(体积)。这项工作为合理设计M-TES系统的排放过程提供了工程见解。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Applied Energy》 |2015年第15期|61-68|共8页
  • 作者单位

    Sun Yat Sen Univ, Sch Engn, Guangzhou 510275, Guangdong, Peoples R China;

    Malardalen Univ, Sch Business Soc & Energy, Vasteras, Sweden;

    Inner Mongolia Univ Sci & Technol, Sch Energy & Environm, Baotou, Peoples R China;

    Guangzhou Univ, Acad Bldg Energy Efficiency, Guangzhou, Guangdong, Peoples R China;

    Sun Yat Sen Univ, Sch Engn, Guangzhou 510275, Guangdong, Peoples R China;

    Malardalen Univ, Sch Business Soc & Energy, Vasteras, Sweden|Royal Inst Technol, Energy Proc Div, Stockholm, Sweden;

    S China Univ Technol, Sch Chem & Chem Engn, Guangzhou 510641, Guangdong, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Mobilized thermal energy storage system; Phase change materials; Computational fluid dynamics; Solidification;

    机译:动员的热能存储系统;相变材料;计算流体力学;固溶;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号