...
首页> 外文期刊>Applied Energy >Design/test of a hybrid energy storage system for primary frequency control using a dynamic droop method in an isolated microgrid power system
【24h】

Design/test of a hybrid energy storage system for primary frequency control using a dynamic droop method in an isolated microgrid power system

机译:隔离微电网动力系统中使用动态下垂方法进行一次频率控制的混合储能系统的设计/测试

获取原文
获取原文并翻译 | 示例
           

摘要

Frequency dynamics, occurring due to the high penetration of the renewable energy in the microgrid (MG) are of great concern to the system dynamic stability. The battery energy storage systems are reported to have a good frequency regulating ability in the off-grid microgrid systems. However, to compensate the power irregularities, the battery is needed to charge and discharge at a high frequency, which degrades its lifetime significantly. In addition, in the primary frequency control (PFC) the battery needs to deal with the abrupt power changes, which will also accelerate the battery degradation process. In this regard, this paper presents a new concept of primary frequency control by integrating the superconducting magnetic energy storage (SMES) with battery, thus achieving the ability of not only performing a good frequency regulating function but also extending the battery service time. A novel power sharing method using the dynamic droop factors to control charge/discharge prioritization between the SMES and the battery is proposed and has been proved to have a better operation than the preceding droop control. A microgrid system based on the case of Uligam Island of Maldives is developed in the PSCAD, verifying the performance of PFC with the hybrid energy storage system (HESS) using the dynamic droop control. The results show that the HESSs have a better frequency regulating ability and the proposed dynamic droop control is capable of exploiting the different characteristics of both SMES and battery, forming a kind of complementary hybrid energy storage system. Moreover, the battery in the new control scheme is better protected from the short-term frequent cycles and abrupt currents, hence has been proved to have a longer lifetime extension. (C) 2016 Elsevier Ltd. All rights reserved.
机译:由于可再生能源在微电网(MG)中的高度渗透而产生的频率动态关系到系统动态稳定性。据报道,电池能量存储系统在离网微电网系统中具有良好的频率调节能力。然而,为了补偿功率不规则性,需要电池以高频率充电和放电,这大大降低了其寿命。另外,在主频率控制(PFC)中,电池需要处理突然的功率变化,这也将加速电池的退化过程。在这方面,本文提出了一种通过将超导磁能存储器(SMES)与电池集成在一起来实现一次频率控制的新概念,从而实现了不仅执行良好的频率调节功能而且还延长了电池使用寿命的能力。提出了一种使用动态下降因子来控制SMES和电池之间的充电/放电优先级的新型功率共享方法,并已被证明比先前的下降控制具有更好的操作。在PSCAD中开发了一个基于马尔代夫Uligam岛案例的微电网系统,并使用动态下垂控制技术通过混合储能系统(HESS)验证了PFC的性能。结果表明,HESS具有更好的频率调节能力,所提出的动态下垂控制能够利用SMES和电池的不同特性,形成一种互补的混合储能系统。此外,新控制方案中的电池可以更好地保护其免受短期频繁循环和突变电流的影响,因此已被证明具有更长的使用寿命。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号