...
首页> 外文期刊>Applied Energy >Impact of periodic flow reversal of heat transfer fluid on the melting and solidification processes in a latent heat shell and tube storage system
【24h】

Impact of periodic flow reversal of heat transfer fluid on the melting and solidification processes in a latent heat shell and tube storage system

机译:潜热壳管式存储系统中传热流体的周期性逆流对熔融和凝固过程的影响

获取原文
获取原文并翻译 | 示例
           

摘要

A numerical study has been conducted on a shell and tube latent heat storage system whereby the inlet heat transfer fluid direction is periodically reversed during charging and discharging. The impact of varying the boundary condition at the interface of the tubes carrying the heat transfer fluid and phase change material (PCM) on the evolution of the phase change front, heat transfer area and heat transfer rate have been evaluated during the charging and discharging processes. Results for the charging processes show a higher heat transfer area develops during the early stages and amplification of natural convection after 40% melt fraction, leading to a higher heat transfer rate. In comparison to the fixed flow condition, periodic flow reversal for the discharge cases results in an increased heat transfer area for a longer period of time, leading to a higher heat transfer rate particularly after 75% solidification. This effect is more important for discharging cases in the absence of convection heat transfer. Periodically reversing the direction of heat transfer fluid, which produced a periodic boundary condition at the tube-PCM interface, also resulted in a lower temperature gradient in space and time and consequently higher exergy recovery, and about a 6% increase in the time-average heat transfer rate in the charging and discharging cases. The novel reversal flow method provides a means to implement a periodic boundary condition without changing the heat source/sink, enhancing the thermal performance and cost effectiveness of latent heat storage systems. Phase change storage systems incorporating periodic flow reversal provide higher energy delivery rates, greater power density and more exergy recovery. This method can support fast heat release to respond to a peak load in a CSP plant or fast heat storage to protect a tubular receiver from high thermal stresses. (C) 2017 Elsevier Ltd. All rights reserved.
机译:对壳管式潜热存储系统进行了数值研究,由此在充装和排放期间周期性地反转了入口传热流体的方向。在充放电过程中,已经评估了在载热流体和相变材料(PCM)的管界面处改变边界条件对相变前沿,传热面积和传热速率的演变的影响。 。装料过程的结果表明,在早期阶段会形成更高的传热面积,并且在40%的熔体分数后自然对流会放大,从而导致更高的传热速率。与固定流动条件相比,排出情况下的周期性流动逆转导致较长时间段内增加的传热面积,从而导致更高的传热速率,尤其是在75%固化后。对于没有对流传热的情况下的排出情况,此效果更为重要。定期反转传热流体的方向,这会在tube-PCM界面上产生周期性边界条件,还导致空间和时间上的温度梯度降低,因此,火用回收率更高,时间平均增加约6%充放电情况下的热传递率。新颖的逆流方法提供了一种在不改变热源/散热器的情况下实现周期性边界条件的手段,从而提高了潜热存储系统的热性能和成本效益。结合周期性逆流的相变存储系统可提供更高的能量传输速率,更高的功率密度和更多的火用回收率。此方法可支持快速放热以响应CSP工厂中的峰值负载,或支持快速储热以保护管状接收器免受高热应力。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号