首页> 外文期刊>Applied Energy >Numerical study on the effects of fins and nanoparticles in a shell and tube phase change thermal energy storage unit
【24h】

Numerical study on the effects of fins and nanoparticles in a shell and tube phase change thermal energy storage unit

机译:壳管相变储热单元中翅片和纳米颗粒影响的数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

Energy storage is critically important for intermittent renewable sources such as solar or wind. This paper presents a numerical study on a shell and tube thermal energy storage unit using a common organic phase change material (PCM) - paraffin wax. To overcome the problem of slow charging due to low thermal conductivity of paraffin wax, this research applies a multiscale heat transfer enhancement technique, with circular plate fins on outer surface of the heat transfer fluid (HTF) tube and highly conductive nanoparticles (Al2O3) dispersed in the PCM on the shell side. The novelty of this research is that by simultaneous application of two enhancement methods, we are able to analyze the interactions between the two, which was not possible in previous studies on separate technique. A computational fluid dynamics (CFD) model is developed to simulate melting of the PCM with the following parameters: nanoparticle concentration phi from 0 to 4 vol%; fin angle alpha from -45 degrees to 45 degrees, and pitch p from 45 to 65 mm. The obtained numerical data was analyzed with a traditional method and a statistical response surface method (RSM). The latter represents another novelty of this research. The RSM analysis shows that fin angle and nanoparticle concentration are two significant parameters in affecting the PCM melting, but pitch of the fins does not show noticeable effect. Numerical results demonstrate that adding nanoparticles in the PCM does not accelerate the charging process; on the contrary it leads to longer charging time and lower overall heat transfer rate due to reduction of natural convection in the melted PCM. A strong interaction is also found between these two significant parameters, for example the charging time considerably increases when nanoparticles are added at alpha = -45 degrees, but this effect is less pronounced when alpha = 45 degrees. Positive fin angles are found to be favorable for PCM melting due to enhanced natural convection with strong local vorticities formed below the fins. A moderate fin angle of 35 degrees leads to the shortest charging time among all studied cases. These new findings can be valuable in design of PCM units for renewable energy storage, waste heat recovery, or thermal management in engineering systems.
机译:能量存储对于间歇性可再生能源(例如太阳能或风能)至关重要。本文提供了一种使用普通有机相变材料(PCM)-石蜡的壳管式热能存储单元的数值研究。为了克服石蜡的低导热性导致的缓慢充电的问题,本研究采用了多尺度传热增强技术,在传热流体(HTF)管的外表面装有圆形板状散热片,并分散了高导电性纳米颗粒(Al2O3)在外壳一侧的PCM中。这项研究的新颖之处在于,通过同时应用两种增强方法,我们能够分析两者之间的相互作用,而这在以前有关单独技术的研究中是不可能的。建立了计算流体动力学(CFD)模型,以模拟具有以下参数的PCM的熔化:纳米粒子浓度phi从0到4 vol%;鳍角α从-45度到45度,间距p从45到65 mm。使用传统方法和统计响应面方法(RSM)对获得的数值数据进行分析。后者代表了这项研究的另一个新颖之处。 RSM分析表明,翅片角度和纳米颗粒浓度是影响PCM熔化的两个重要参数,但是翅片的螺距并未显示出明显的作用。数值结果表明,在PCM中添加纳米颗粒不会加速充电过程。相反,由于熔化的PCM中自然对流的减少,导致充电时间延长和总传热速率降低。在这两个重要参数之间也发现了强相互作用,例如,当以α= -45度添加纳米粒子时,充电时间会显着增加,但是当α= 45度时,这种影响就不太明显。由于增强的自然对流以及在鳍片下方形成的强局部涡流,发现正鳍片角度有利于PCM熔化。在所有研究案例中,35度的适度鳍角可缩短充电时间。这些新发现对于用于可再生能源存储,废热回收或工程系统中的热管理的PCM单元设计非常有价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号