首页> 外文期刊>Applied Energy >A Q-learning based transient power optimization method for organic Rankine cycle waste heat recovery system in heavy duty diesel engine applications
【24h】

A Q-learning based transient power optimization method for organic Rankine cycle waste heat recovery system in heavy duty diesel engine applications

机译:基于Q学习的瞬态功率优化方法,用于重型柴油机应用中的有机朗肯循环余量恢复系统

获取原文
获取原文并翻译 | 示例
           

摘要

In recent years, the organic Rankine cycle waste heat recovery (ORC-WHR) technology gains popularity in heavy-duty diesel engine applications. Drastic fluctuations of the waste heat caused by variable daily operation of mobile heavy-duty trucks bring an extreme transient power optimization challenge to ORC-WHR systems. Existing power optimization methods either neglect transient behavior of the Rankine cycle system or compromise model accuracy for computation efficiency. Different from literature, this study first time proposes a model-free reinforcement learning method to achieve online transient power optimization for the ORC-WHR system and explains the benefits of learning method in this application. A tabular Q-learning is formulated to optimize the net power on an experimentally validated ORC-WHR system. Q-learning is explained in detail using states, action, and policy information. To quantify the power optimization of the proposed method, Proper-Integral-Derivative method, state-of-art offline and online Dynamic Programming methods are implemented. The results showed that Q-learning generated 22% more cumulative energy than the energy Proper-IntegralDerivative method generated. Furthermore, Q-learning produces 96.6% of cumulative energy that the offline Dynamic Programming generates over a transient engine condition, while it requires less computation cost and is executed online. Additionally, the Q-learning produces 0.5% more cumulative energy than the machine learningbased online Dynamic Programming results and exhibits better vapor temperature robustness than the online Dynamic Programming method (4 degrees C-28 degrees C superheat by Q-learning vs. 5 degrees C-94 degrees C superheat by online Dynamic Programming). Given the excellent power production performance, low computation cost requirement and high robustness, the proposed Q-learning method has the potential to improve the power production of the ORC-WHR system with different configurations.
机译:近年来,在重型柴油发动机应用的有机朗肯循环式余热回收(ORC-WHR)技术普及的收益。造成移动重型卡车的变量日常运作的废热大幅波动带来的极端瞬态功率优化的挑战ORC-WHR系统。现有的功耗优化方法或者朗肯循环系统或妥协模型精度计算效率的疏忽瞬态行为。从文学不同的是,这项研究首次提出了一种无模型强化学习方法实现网上瞬态功率优化的ORC-WHR系统,并解释在这个应用程序学习方法的好处。表格式Q学习被配制以优化实验验证的ORC-WHR系统上的净功率。 Q学习使用状态,操作和策略信息详细解释。为了量化该方法的功耗优化,正确的 - 积分 - 微分法,国家的最先进的离线和在线动态规划方法来实现。结果表明,Q-学习生成22%以上的累积能量大于所产生的能量适当-IntegralDerivative方法。此外,Q-学习产生累积能量的96.6%脱机的动态规划产生在过渡发动机状况,而它需要较少的计算成本,并在线执行。另外,所述Q学习产生0.5%以上的累积能量比机器learningbased在线动态规划的结果和显示出更好的蒸汽温度的鲁棒性比在线动态规划法(4℃,28℃的过热通过Q学习与5摄氏度-94℃的过热度的在线动态规划)。由于出色的动力生产性能,低计算量需求和高耐用性,所提出的Q学习方法,提高电力生产的ORC-WHR系统不同配置的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号