首页> 外文期刊>Applied Energy >Unit commitment of photovoltaic-battery systems: An advanced approach considering uncertainties from load, electric vehicles, and photovoltaic
【24h】

Unit commitment of photovoltaic-battery systems: An advanced approach considering uncertainties from load, electric vehicles, and photovoltaic

机译:光伏电池系统的单位承诺:考虑负载,电动车和光伏的不确定性的先进方法

获取原文
获取原文并翻译 | 示例
           

摘要

Increasing use of renewable energy leads to change in load flows from predictable generation and inelastic demand to more volatile and price-elastic patterns, especially on the distribution level. New applications such as electric vehicles further increase the demand of electricity. Therefore, a reliable, local control of load flexibilities is a key competence of future system operators. This paper presents a central planner-decentral operator approach to schedule local electricity flows. The central planner conducts a two-stage optimization to derive the demand limit and a corresponding battery schedule, while the decentral operator simply applies the battery schedule and heuristically reacts to unforeseen deviations between the forecasted and actual loads and power generation. Privacy concerns of the decentral planner are avoided as no private information is shared with the central planner. A relaxation factor and a reserve capacity for the battery are derived from a Monte Carlo simulation to consider the underlying uncertainties of load, photovoltaic generation, and electric vehicle charging. Our results show that the load of the decentral operator can be limited reliably for six days of the considered week and a maximum reduction of 2.6 kW (52%) of peakload has been accomplished. Furthermore, the approach is suitable for systems with limited computational resources at the place of the decentral operator, which is the common case in this field.
机译:增加使用可再生能源的使用导致负载流的变化从可预测的产生和无弹性需求到更挥发和价格弹性模式,特别是在分配水平上。电动汽车等新应用进一步提高了电力需求。因此,负载灵活性可靠,局部控制是未来系统运营商的关键能力。本文介绍了一个中央策划者 - 分级算子方法,以安排局部电流。中央规划师进行两级优化以导出需求限制和相应的电池时间表,而分级操作员简单地应用电池时间表,并且启发性地反应预测和实际负载和发电之间的不可预见的偏差。由于没有与中央规划师共享私人信息,避免了分级计划者的隐私问题。放松系数和电池的储备容量源自蒙特卡罗模拟,以考虑负载,光伏发电和电动车辆充电的潜在不确定性。我们的研究结果表明,六天的六天内可靠地限制了二折操作员的负荷,最大减少了2.6千瓦(52%)的峰值。此外,该方法适用于分解操作员的有限计算资源的系统,这是该字段中的常见情况。

著录项

  • 来源
    《Applied Energy》 |2020年第15期|115972.1-115972.13|共13页
  • 作者单位

    Karlsruhe Inst Technol KIT Inst Ind Prod IIP Kaiserstr 12 D-76131 Karlsruhe Germany;

    Univ North Carolina Charlotte Dept Engn Technol Charlotte NC 28223 USA;

    Karlsruhe Inst Technol KIT Inst Ind Prod IIP Kaiserstr 12 D-76131 Karlsruhe Germany|German Aerosp Ctr DLR Inst Engn Thermodynam Dept Energy Syst Anal Pfaffenwaldring 38-40 D-70569 Stuttgart Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    PV-battery systems; Peak shaving; Uncertainty; Monte Carlo simulation; Electric vehicle; Optimization;

    机译:PV-电池系统;峰值剃须;不确定性;蒙特卡洛仿真;电动车;优化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号