首页> 外文期刊>Applied Energy >Reversible solid-oxide cell stack based power-to-x-to-power systems: Comparison of thermodynamic performance
【24h】

Reversible solid-oxide cell stack based power-to-x-to-power systems: Comparison of thermodynamic performance

机译:基于可逆的固体氧化物电池堆的电力到X电力系统:热力学性能的比较

获取原文
获取原文并翻译 | 示例
       

摘要

The increasing penetration of variable renewable energies poses new challenges for grid management. The economic feasibility of grid-balancing plants may be limited by low annual operating hours if they work either only for power generation or only for power storage. This issue might be addressed by a dual-function power plant with power-to-x capability, which can produce electricity or store excess renewable electricity into chemicals at different periods. Such a plant can be uniquely enabled by a solid-oxide cell stack, which can switch between fuel cell and electrolysis with the same stack. This paper investigates the optimal conceptual design of this type of plant, represented by power-to-x-to-power process chains with x being hydrogen, syngas, methane, methanol and ammonia, concerning the efficiency (on a lower heating value) and power densities. The results show that an increase in current density leads to an increased oxygen flow rate and a decreased reactant utilization at the stack level for its thermal management, and an increased power density and a decreased efficiency at the system level. The power-generation efficiency is ranked as methane (65.9%), methanol (60.2%), ammonia (58.2%), hydrogen (58.3%), syngas (53.3%) at 0.4 A/cm(2), due to the benefit of heat-to-chemical-energy conversion by chemical reformulating and the deterioration of electrochemical performance by the dilution of hydrogen. The power-storage efficiency is ranked as syngas (80%), hydrogen (74%), methane (72%), methanol (68%), ammonia (66%) at 0.7 A/cm(2), mainly due to the benefit of co-electrolysis and the chemical energy loss occurring in the chemical synthesis reactions. The lost chemical energy improves plant-wise heat integration and compensates for its adverse effect on power-storage efficiency. Combining these efficiency numbers of the two modes results in a rank of round-trip efficiency: methane (47.5%) syngas (43.3%) hydrogen (42.6%) methanol (40.7%) ammonia (38.6%). The pool of plant designs obtained lays the basis for the optimal deployment of this balancing technology for specific applications.
机译:可变可再生能源的普遍普及造成网格管理的新挑战。如果仅适用于发电或仅适用于蓄电,电网平衡厂的经济可行性可能受到低年度工作时间的限制。双功能电厂可能通过电源到X能力来解决此问题,可在不同时期的化学品中产生电力或将多余的可再生电力储存。这种植物可以通过固体氧化物电池堆唯一能够,其能够在燃料电池和相同堆叠之间切换。本文研究了这种类型的植物的最佳概念设计,由X-X-of Procep Proce Chains表示,X是氢,合成气,甲烷,甲醇和氨,关于效率(较低的加热值)和电力密度。结果表明,电流密度的增加导致氧气流量增加,并且在其热管理的堆叠水平下的反应物利用率降低,以及增加的功率密度和系统级的效率降低。发电效率被评为甲烷(65.9%),甲醇(60.2%),氨(58.2%),氢气(58.3%),合成气(53.3%),由于效益,为0.4A / cm(2),用氢气稀释化学品拟合和电化学性能劣化的热化学能量转化。蓄电效率被排名为合成气(80%),氢气(74%),甲烷(72%),甲醇(68%),氨(66%),主要是由于含量为0.7A / cm(2)的氨(66%),主要是由于有益于化学合成反应中发生的化学能量损失。损失的化学能量改善了植物智热集成,并补偿了对蓄电效率的不利影响。组合两种模式的效率数导致往返效率的等级:甲烷(47.5%)>合成气(43.3%)氢(42.6%)>甲醇(40.7%)>氨(38.6%)。获得的植物设计池为特定应用程序提供了该平衡技术的最佳部署基础。

著录项

  • 来源
    《Applied Energy》 |2020年第1期|115330.1-115330.9|共9页
  • 作者单位

    Swiss Fed Inst Technol Lausanne Grp Energy Mat Lausanne Switzerland|Swiss Fed Inst Technol Lausanne Ind Proc & Energy Syst Engn Lausanne Switzerland;

    Swiss Fed Inst Technol Lausanne Ind Proc & Energy Syst Engn Lausanne Switzerland|North China Elect Power Univ Natl Res Ctr Thermal Power Engn & Technol Beijing Peoples R China;

    Swiss Fed Inst Technol Lausanne Grp Energy Mat Lausanne Switzerland;

    Swiss Fed Inst Technol Lausanne Grp Energy Mat Lausanne Switzerland;

    Natl Chiao Tung Univ Inst Biomed Engn Hsinchu Taiwan;

    North China Elect Power Univ Natl Res Ctr Thermal Power Engn & Technol Beijing Peoples R China;

    Swiss Fed Inst Technol Lausanne Ind Proc & Energy Syst Engn Lausanne Switzerland;

    Swiss Fed Inst Technol Lausanne Grp Energy Mat Lausanne Switzerland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Electrical storage; Power-to-x; Reversible solid-oxide cell; Ammonia; Methanol; Sector coupling;

    机译:蓄电子;功率至X;可逆固体氧化物细胞;氨;甲醇;扇形耦合;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号