首页> 外文期刊>Applied Energy >Achieving low carbon local energy communities in hot climates by exploiting networks synergies in multi energy systems
【24h】

Achieving low carbon local energy communities in hot climates by exploiting networks synergies in multi energy systems

机译:通过在多能源系统中利用网络协同效应,在炎热气候中实现低碳本地能源社区

获取原文
获取原文并翻译 | 示例
       

摘要

Design and planning of low carbon cities and districts must consider the synergies between all the energy networks available. Energy systems optimal design thus assumes a critical importance in determining both costs and environmental impact of operating such districts. This is particularly true following the concept of Local Energy Community, with a single entity representing both the demand and the manager of the energy generation assets. This paper proposes an innovative model for the optimal design of an energy community aiming at lowering its carbon footprint. The community is modeled as a network of spatially dislocated energy hubs, each with its own demand of electricity, heating and cooling energy. The model aims at defining the optimal mix of energy systems, thermal and electric energy storages and energy network infrastructures needed to satisfy the district's users energy demands. The model is validated using energy demand data from the Nanyang Technological University campus in Singapore by analyzing three scenarios. In the first one, the optimization goal is purely economic and it aims at minimizing the overall cost of operating the district. The second and third scenarios focus on reducing the carbon footprint of the district by imposing an additional constraint, which limits the overall primary energy consumption. In all the scenarios the algorithm chooses to partially or totally connect the five sites with a district cooling network and take advantage of cold thermal storage, proving their potential in hot climates. In the first scenario, the advantages of the district cooling solution are mainly related to the savings in the capital cost of electric chillers that partially offset the cost of the district cooling network; indeed, district cooling network allows the sites to share cooling power thus achieving a reduction in chillers total installed size of 33%.In the second scenario, in order to meet the target of 10% reduction of the overall primary energy, the optimal solution also requires the installation of a photovoltaic system. In the third scenario, imposing a 20% reduction of the overall primary energy, also a natural gas fed trigeneration plant comes into play.
机译:低碳城市和地区的设计和规划必须考虑所有可用能源网络之间的协同作用。因此,能源系统的优化设计在确定运营此类区域的成本和环境影响时至关重要。遵循本地能源共同体的概念尤其如此,其中一个实体既代表能源资产的需求,又代表能源资产的管理者。本文提出了一种创新模型,旨在优化能源社区的设计,以降低其碳足迹。该社区被建模为空间错置的能源枢纽网络,每个枢纽都有自己的电力,供热和制冷能源需求。该模型旨在定义满足该地区用户能源需求所需的能源系统,热能和电能储存以及能源网络基础设施的最佳组合。通过分析三种情况,使用来自新加坡南洋理工大学校园的能源需求数据验证了该模型。在第一个中,优化目标纯粹是经济目标,其目的是最大程度地降低区域运营的总体成本。第二种和第三种方案通过施加额外的约束来集中于减少该地区的碳足迹,这限制了总体一次能源消耗。在所有情况下,该算法都选择将这五个站点的一部分或全部与区域冷却网络相连,并利用冷蓄热技术,证明其在炎热气候下的潜力。在第一种情况下,区域制冷解决方案的优势主要与节省电制冷机的资本成本有关,这部分抵消了区域制冷网络的成本。实际上,区域供冷网络允许站点共享制冷功率,从而将冷水机组的总安装尺寸减少了33%。在第二种情况下,为了实现将整体一次能源减少10%的目标,最佳解决方案需要安装光伏系统。在第三种情况下,将一次能源总量减少了20%,天然气供热三联产电厂也开始发挥作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号