首页> 外文期刊>Applied Energy >Improving the biomethane yield from food waste by boosting hydrogenotrophic methanogenesis
【24h】

Improving the biomethane yield from food waste by boosting hydrogenotrophic methanogenesis

机译:通过促进氢营养型甲烷生成来提高食物垃圾中的生物甲烷产率

获取原文
获取原文并翻译 | 示例
       

摘要

Anaerobic digestion of food waste is usually impacted by high levels of VFAs, resulting in low pH and inhibited methane production from acetate (acetoclastic methanogenesis); however, this could be harnessed for improving methane production via hydrogenotrophic methanogenesis (biomethanation). In this study, batch anaerobic digestion of food waste was conducted to enhance biomethanation by supplying hydrogen gas (H-2), using a gas mixture of 5%-H-2 and 95%-N-2. The addition of H-2 influenced a temporal microbial shift in substrate utilisation from dissolved organic nutrients to H-2 and CO2 and was perceived to have enhanced the hydrogenotrophic methanogenic activity. As a result, with the release of hydrogen as degradation progressed (secondary fermentation) hydrogenotrophic methanogenesis was further enriched. This resulted in an enhancement of the upgrading of the biogas, with a 12.1% increase in biomethane (from 417.6 to 468.3 NmL-CH4/gVS(added)) and 38.9% reduction in CO2 (from 227.1 to 138.7 NmL-CO2/gVS(added)). Furthermore, the availability of hydrogen gas at the start of the process promoted faster propionate degradation, by the enhanced activity of the H-2-utilisers, thereby, reducing likely propionate-induced inhibitions. The high level of acidification from VFAs production helped to prevent excessive pH increases from the enhanced hydrogenotrophic methanogenic activity. Therefore, it was found that the addition of hydrogen gas to AD reactors treating food waste showed great potential for enhanced methane yield and biogas upgrade, supported by VFAs-induced pH buffer. This creates the possibility to optimise hydrogenotrophic methanogenesis towards obtaining biogas of the right quality for injection into the gas grid.
机译:餐厨垃圾的厌氧消化通常受到高水平VFA的影响,导致pH值低和抑制了乙酸产生的甲烷(破弹甲烷化)。但是,可以利用这种方法通过氢营养型甲烷生成(生物甲烷化)来提高甲烷产量。在这项研究中,通过使用5%-H-2和95%-N-2的混合气体供应氢气(H-2),对食物残渣进行分批厌氧消化,以增强生物甲烷化作用。 H-2的添加影响了底物利用率从溶解的有机养分到H-2和CO2的暂时微生物迁移,并且被认为增强了氢营养甲烷化活性。结果,随着降解的进行(二次发酵)释放氢,氢营养型甲烷生成进一步富集。这导致沼气的升级得到增强,生物甲烷增加12.1%(从417.6 NmL-CH4 / gVS(添加)降至418.3 NmL-CH4 / gVS(增加)),CO2减少38.9%(从227.1 NmL-CO2 / gVS(增加))添加))。此外,由于H-2-利用剂的活性增强,在该过程开始时氢气的可用性促进了丙酸酯降解更快,从而减少了可能的丙酸酯诱导的抑制作用。 VFA产生的高水平酸化作用有助于防止氢营养型产甲烷活性增强而导致pH值过高。因此,发现在VFA诱导的pH缓冲液的支持下,向处理食物垃圾的AD反应器中添加氢气显示出提高甲烷产量和提高沼气转化率的巨大潜力。这创造了优化氢营养甲烷化的可能性,从而获得了合适质量的沼气以注入气网。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号