首页> 外文期刊>Applied Energy >Alternative and sustainable heat production for drinking water needs in a subarctic climate (Nunavik, Canada): Borehole thermal energy storage to reduce fossil fuel dependency in off-grid communities
【24h】

Alternative and sustainable heat production for drinking water needs in a subarctic climate (Nunavik, Canada): Borehole thermal energy storage to reduce fossil fuel dependency in off-grid communities

机译:亚北极气候中饮用水的替代性和可持续热量生产(加拿大努纳维克):钻孔热能存储,以减少离网社区对化石燃料的依赖

获取原文
获取原文并翻译 | 示例
       

摘要

The development of renewable energy technologies in the Arctic faces technical barriers mainly related to extremely cold temperature. Moreover, storage issues to bridge the gap between supply and demand are more compelling than in temperate climates. Can underground thermal energy storage be efficiently used in such a cold environment to offer a viable seasonal storage alternative? This working hypothesis was tested by designing and simulating for the first time a borehole thermal energy storage facility in a subarctic climate. A system comprising a 1000 m(2) gross solar area and one hundred 30-m-deep borehole heat exchangers was simulated in TRNSYS to cover part of the heating demand of a pumping station that supplies drinking water in Kuujjuaq (Northern Quebec, Canada). The Nunavik capital is characterized by more than 8000 heating degree days below 18 degrees C and average spring-summer solar radiation of 4.6 kWh m(-2) d(-1). Despite the presence of discontinuous scattered permafrost in the area, the study site is free of frozen ground, likely due to a talik that developed around a nearby lake. A number of scenarios reveal that solar fraction of 45 to 50% and heat recovery of more than 60% can be achieved by the 3rd year of operation, resulting in annual savings of 7000 l of regular diesel consumption. A 50-years life-cycle cost analysis demonstrates that a specific incentive program can guarantee similar net present cost and levelized cost of energy compared to the current diesel-dependent situation, or better if electricity comes from renewable source. An additional 10% loss of thermal energy occurs when groundwater advection is a factor. FEFLOW simulations demonstrate that square-shaped storage together with a newly-proposed borehole connection design can reduce advection heat loss by 60% and improve the overall performance of the system. This work validates the technical viability of underground thermal energy storage in subarctic climates and indicates it could help reduce fossil fuel consumption in remote arctic regions across the world. Moreover, the novel type of borehole connection designed for this study can be useful in seasonal storage systems facing low heat recovery due to groundwater flow, regardless of climate.
机译:北极可再生能源技术的发展面临着与极端低温有关的技术壁垒。此外,与温带气候相比,弥合供需差距的存储问题更加引人注目。地下热能存储可以在如此寒冷的环境中有效地使用,以提供可行的季节性存储替代方案吗?通过首次设计和模拟在亚北极气候中的钻孔储热设施,对这一工作假设进行了检验。在TRNSYS中模拟了一个包含1000 m(2)总太阳能面积和100个深30 m的井眼热交换器的系统,以满足一部分提供给Kuujjuaq(加拿大北魁北克省)的饮用水的泵站的供热需求。 。努纳维克(Nunavik)首都的特征是在18摄氏度以下的温度下有8000多个加热天,并且春季和夏季的平均太阳辐射为4.6 kWh m(-2)d(-1)。尽管该地区存在不连续的分散多年冻土,但研究地点没有结冰的地面,这可能是由于附近湖泊周围形成的滑石粉所致。许多方案表明,在运行的第3年可以实现45%至50%的太阳能利用率和60%以上的热回收率,从而每年可节省7000升常规柴油消耗量。一项为期50年的生命周期成本分析表明,与当前依赖柴油的情况相比,一项特定的激励计划可以保证类似的净现值成本和均等的能源成本,如果电来自可再生能源,则更好。当地下水平流成为一个因素时,会额外损失10%的热能。 FEFLOW仿真表明,方形存储和新提出的钻孔连接设计可以将对流热损失降低60%,并改善系统的整体性能。这项工作验证了亚北极气候中地下热能存储的技术可行性,并表明它可以帮助减少全球偏远北极地区的化石燃料消耗。此外,专为这项研究设计的新型钻孔连接可用于季节性存储系统,该系统由于地下水流动而面临着热量回收低的问题,而与气候无关。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号