首页> 外文期刊>Applied Energy >Numerical analyses of hybrid jet impingement/microchannel cooling device for thermal management of high concentrator triple-junction solar cell
【24h】

Numerical analyses of hybrid jet impingement/microchannel cooling device for thermal management of high concentrator triple-junction solar cell

机译:高集中度三结太阳能电池热管理混合射流冲击/微通道冷却装置的数值分析

获取原文
获取原文并翻译 | 示例
           

摘要

An efficient cooling arrangement is mandatory to achieve a higher net output power from the high concentrator photovoltaic structures in addition to extending their lifetime. In the current study, five new heat sink designs for a jet impingement/microchannel hybrid cooling scheme were investigated and compared with a conventional jet impingement cooling scheme. These designs consisted of an arrangement of rectangular fins at the streamwise length of the heat sink. This resulted in a stepwise decrease in the corresponding channel width and hydraulic diameter. A comprehensive three-dimensional thermal and structure model was developed to investigate the capability of the proposed designs in terms of reduction of the cell temperature besides enhancement of the temperature uniformity. Based on the results, the hybrid cooling scheme exhibited promising cooling ability compared to the conventional jet impingement scheme. The results of the present study show that the hybrid cooling scheme is effective cooling system and it achieved the utmost possible reduction of solar cell temperature, under high solar concentration ratio of 1000 suns where the solar cell temperature reduces to 55 degrees C. When the inlet mass flow rate was increased to 50 g/min under the same conditions, a corresponding reduction in the cell temperature from 67.3 to 55 degrees C was observed for Case 4 of the hybrid scheme designs. In addition, there was a decrease from 82.3 to 63.2 degrees C for Case 1 of the conventional jet impingement heat sink (HS). Under the hybrid cooling scheme, the electrical efficiency of the cell improved to 39.7% when the inlet mass flow rate was equal to 50 g/min for Case 4. Exergy analysis revealed that the hybrid scheme achieved an overall exergy efficiency of 53.5% at inlet mass flow rate of 25 g/min.
机译:为了延长高聚光器光伏结构的净输出功率,并延长其使用寿命,必须采用有效的冷却装置。在当前的研究中,研究了五个用于射流冲击/微通道混合冷却方案的新型散热器设计,并将其与常规射流冲击冷却方案进行了比较。这些设计包括在散热片的流向长度处布置的矩形散热片。这导致相应的通道宽度和水力直径逐步减小。开发了一个综合的三维热和结构模型,以研究提出的设计在降低电池温度以及增强温度均匀性方面的能力。根据结果​​,与传统的射流冲击方案相比,混合冷却方案显示出令人鼓舞的冷却能力。本研究的结果表明,在1000个太阳的高太阳集中率(太阳能电池温度降至55摄氏度)下,混合冷却方案是有效的冷却系统,并且最大限度地降低了太阳能电池的温度。在相同条件下,质量流量增加到50 g / min,对于混合方案设计的案例4,观察到电池温度从67.3到55摄氏度相应降低。此外,传统的射流冲击式散热器(HS)的情况1从82.3摄氏度降低到63.2摄氏度。在混合冷却方案下,对于案例4,当入口质量流量等于50 g / min时,电池的电效率提高到39.7%。火用分析表明,混合方案在入口处的总火用效率为53.5%。质量流量为25 g / min。

著录项

  • 来源
    《Applied Energy》 |2019年第1期|113538.1-113538.19|共19页
  • 作者单位

    Egypt Japan Univ Sci & Technol Chem & Petrochem Engn Dept Alexandria Egypt|Aswan Univ Fac Energy Engn Mech Power Engn Dept Aswan Egypt|Tokyo Inst Technol Dept Chem Sci & Engn Tokyo 1528552 Japan;

    Tokyo Inst Technol Dept Chem Sci & Engn Tokyo 1528552 Japan;

    Mansoura Univ Mech Power Engn Dept Mansoura 35516 Egypt;

    Egypt Japan Univ Sci & Technol Chem & Petrochem Engn Dept Alexandria Egypt|Alexandria Univ Fac Engn Chem Engn Dept Alexandria 11432 Egypt;

    Egypt Japan Univ Sci & Technol Chem & Petrochem Engn Dept Alexandria Egypt|City Sci Res & Technol Applicat Fabricat Technol Dept Adv Technol & New Mat & Res Inst ATNMRI Alexandria Egypt;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    HCPV/T; Multijunction solar cell; Jet impingement/microchannel; Exergy; Structure analysis;

    机译:HCPV / T;多结太阳能电池;射流冲击/微通道;火用;结构分析;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号