...
首页> 外文期刊>Applied Computational Electromagnetics Society journal >A Novel 3D Pseudo-spectral Analysis of Photonic Crystal Slabs
【24h】

A Novel 3D Pseudo-spectral Analysis of Photonic Crystal Slabs

机译:光子晶体平板的新型3D伪光谱分析

获取原文
获取原文并翻译 | 示例

摘要

We consider a double-periodic slab which is characterized by two lattice vectors a_1 and a_2 on the (x, y)-plane, the thickness h_z and a three-dimensional scalar function ε(x, y, z) specifying the dielectric constitution of the slab. Above and below the slab is free space. These assumptions imply that the z-direction is special in this problem. Therefore, following a general scheme we diagonalize the Maxwell's equations with respect to this direction. The periodicity in two directions suggests the use of spatially harmonic functions as a basis. We exploit this property; however, contrary to the traditional schemes, we propose an expansion of the fields in the form Ψ(r, z) = Σ_n f_n(z)exp(jk_n·r) allowing f_n(z) to be a fairly general function of the z-coordinate, rather than an exponential function. In this expression r is the position vector in the (x, y-) transversal plane. To guarantee maximum flexibility we discretize f in terms of finite differences. We demonstrate the superiority of our method by discussing the following properties: ⅰ) Diagonalization only involves the transversal field components, ⅱ) Diagonalization allows us easily to construct and implement various boundary conditions at the bounding surfaces z = 0 and z = h_z, ⅲ) The resulting discretized system is extraordinarily stable and robust, and facilitates fast computations; from the computational performance point of view it compares well with existing methods, while it by far applies to larger class of problems, ⅳ) It allows to use both the radian frequency ω and the wavevector K as input parameters. Therefore, the resulting discrete system can be solved at individual (ω, K)-points of interest, ⅴ) Finally, the method is applicable to both the eigenstate end the excitation problems.
机译:我们考虑一个双周期平板,其特征是在(x,y)平面上有两个晶格矢量a_1和a_2,厚度h_z和一个三维标量函数ε(x,y,z)规定了电介质的结构平板。平板上方和下方是自由空间。这些假设暗示z方向在此问题中是特殊的。因此,遵循一般方案,我们相对于该方向对角麦克斯韦方程组。两个方向上的周期性建议使用空间谐波函数作为基础。我们利用此属性;但是,与传统方案相反,我们建议以Ψ(r,z)=Σ_nf_n(z)exp(jk_n·r)的形式扩展字段,从而允许f_n(z)是z的相当通用的函数-坐标,而不是指数函数。在该表达式中,r是(x,y-)横向平面中的位置向量。为了保证最大的灵活性,我们根据有限差分将f离散化。通过讨论以下特性,我们证明了我们方法的优越性:ⅰ)对角化仅涉及横向场分量,ⅱ)对角化使我们能够轻松地构造和实现边界曲面z = 0和z = h_z的各种边界条件,ⅲ)最终的离散化系统非常稳定和健壮,并有助于快速计算。从计算性能的角度来看,它可以与现有方法很好地比较,而到目前为止,它仍然适用于较大的问题类别。)允许使用弧度频率ω和波矢K作为输入参数。因此,所得到的离散系统可以在各个(ω,K)兴趣点上求解,最后,该方法适用于本征态端和激励问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号