首页> 外文期刊>Applied clay science >Silanization of heat-treated halloysite nanotubes using γ-aminopropyltriethoxysilane
【24h】

Silanization of heat-treated halloysite nanotubes using γ-aminopropyltriethoxysilane

机译:使用γ-氨基丙基三乙氧基硅烷对热处理的埃洛石纳米管进行硅烷化

获取原文
获取原文并翻译 | 示例
       

摘要

By X-ray diffraction, thermal analysis, diffuse reflectance infrared spectrometry, solid state nuclear magnetic resonance (H-1 and Si-29), and transmission/high-resolution transmission electron microscopy, silanization of heat-treated halloysite samples (300-1200 degrees C calcination) using gamma-aminopropyltriethoxysilane through condensation reaction was investigated. Driven by calcining at higher temperatures, the crystalline structure of halloysite transformed to metahalloysite (500-900 degrees C), mixed phases of gamma-alumina, silica, and primary mullite (similar to 1000 degrees C, accompanied by an exothermic reaction), and secondary mullite (1200 degrees C), sequentially; while the lower calcination temperature 300 degrees C failed to change the crystalline structure except for dehydrating surface moisture. In the calcining processes, the tubular morphology of halloysite remained largely unchanged in the range 300-900 degrees C with additional surface mottling at temperatures >= 600 degrees C, but got damaged at higher temperatures >= 1000 degrees C. For the still tubular-shaped calcined samples, the hydroxyl distribution of the 300 degrees C-calcined sample was similar to that of raw halloysite; while for other samples from 600 to 900 degrees C calcination, the inner-surface Al-OH groups gradually decreased until completely diminished, and the external surface Si-OH groups reached maximum at 700 degrees C with decreasing trends as the temperature deviated from 700 degrees C. The 700 degrees C-calcined sample with maximum Si-OH groups acting as reactive sites was thus optimal for silanization, giving the highest silane loading of 5.87 mass %, which would depend on the main modification sites at the tube external surface without strict space limitation, and the unignorable oligomerization reaction of silane species besides their grafting reaction in this case. These results would be very helpful for surface properties optimization of halloysite nanotubes by heat-activation followed by silane modification, and hence for the development of halloysite-based advanced materials.
机译:通过X射线衍射,热分析,漫反射红外光谱,固态核磁共振(H-1和Si-29)以及透射/高分辨率透射电子显微镜,热处理的埃洛石样品的硅烷化(300-1200) γ-氨基丙基三乙氧基硅烷通过缩合反应进行了研究。在较高温度下煅烧的驱动下,埃洛石的晶体结构转变为偏卤石(500-900摄氏度),γ-氧化铝,二氧化硅和原生莫来石的混合相(类似于1000摄氏度,伴随着放热反应),以及次级莫来石(1200摄氏度),顺序;而较低的煅烧温度(300摄氏度)除了使表面水分脱水外,没有改变其晶体结构。在煅烧过程中,埃洛石的管状形态在300-900摄氏度范围内基本保持不变,并在> = 600摄氏度的温度下产生额外的表面斑点,但在高于= 1000摄氏度的高温下受到破坏。煅烧样品成型后,300℃煅烧样品的羟基分布与原埃洛石相似。而对于其他煅烧温度从600到900摄氏度的样品,内表面的Al-OH基团逐渐减少直至完全消失,而外表面的Si-OH基团在700摄氏度时达到最大值,并且随着温度从700摄氏度偏离而降低。因此,具有最大Si-OH基团作为反应位点的700℃煅烧样品是硅烷化的最佳选择,其硅烷负载量最高为5.87质量%,这取决于管外表面的主要修饰位点而没有严格的限制。在这种情况下,除了它们的接枝反应外,空间限制和硅烷物质的不可忽略的低聚反应也是如此。这些结果对于通过热活化然后进行硅烷改性的埃洛石纳米管的表面性能优化非常有帮助,因此对于基于埃洛石的高级材料的开发。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号