首页> 外文期刊>IEEE Transactions on Antennas and Propagation >Fast 3-D Volume Integral Equation Domain Decomposition Method for Electromagnetic Scattering by Complex Inhomogeneous Objects Traversing Multiple Layers
【24h】

Fast 3-D Volume Integral Equation Domain Decomposition Method for Electromagnetic Scattering by Complex Inhomogeneous Objects Traversing Multiple Layers

机译:快速的3-D卷积分方程域分解方法,用于通过遍历多层的复杂不均匀物体电磁散射

获取原文
获取原文并翻译 | 示例
       

摘要

In many applications, electromagnetic scattering from inhomogeneous objects embedded in multiple layers needs to be simulated numerically. The straightforward solution by the method of moments (MoM) for the volume integral equation method is computationally expensive. Due to the shift-invariance and correlation properties of the layered-medium Green's functions, the stabilized-biconjugate gradient fast Fourier transform (BCGS-FFT) has been developed to greatly reduce the computational complexity of the MoM, but so far this method is limited to objects located in a homogeneous background or in the same layer of a layered medium background. For those problems with objects located in different layers, FFT cannot be applied directly in the direction normal to the layer interfaces, thus the MoM solution requires huge computer memory and CPU time. To overcome these difficulties, the BCGS-FFT method combined with the domain decomposition method (DDM) is proposed in this article. With the BCGS-FFT-DDM, the objects or different parts of an object are first treated separately in several subdomains, each of which satisfies the 3-D shift-invariance and correlation properties; the couplings among the different objects/parts are then taken into account, where the coupling matrices can be built to satisfy the 2-D shift-invariance property if the objects/subdomains have the same mesh size on the $xy$ plane. Hence, 3-D FFT and 2-D FFT can respectively be applied to accelerate the self- and mutual-coupling matrix-vector multiplications. By doing so, the impedance matrix is explicitly formed as one including both the self- and mutual-coupling parts, and the solver converges well for problems with considerable conductivity contrasts. The computational complexity in memory and CPU time for self-coupling matrix-vector multiplication are $O(N_{{z}}<^>{q} N_{x} N_{y})$ and $O(N_{{z}} N_{x} N_{y} log (N_{{z}} N_{x} N_{y}))$ respectively, and for mutual-coupling matrix-vector multiplication are $O(N_{{z}}<^>{p} N_{{z}}<^>{q} N_{x} N_{y})$ and $O(N_{{z}}<^>{p} N_{{z}}<^>{q} N_{x} N_{y} log (N_{x} N_{y}))$ , respectively, for the proposed method, where $N_{x}$ and $N_{y}$ are the cell numbers of all the subdomains in the $x$ - and $y$ -directions, and $N_{{z}}<^>{p}$ and $N_{{z}}<^>{q}$ the cell numbers of different subdomains in the ${z}$ -direction. Several results of different subsurface sensing scenarios are presented to show the capabilities of this method.
机译:在许多应用中,需要在数值上模拟嵌入多层中的不均匀物体的电磁散射。通过用于卷积分方程方法的矩(MOM)方法的直接解决方案是计算昂贵的。由于分层中等绿色功能的换档不变性和相关性,已经开发出稳定 - 双晶酸梯度快速傅里叶变换(BCGS-FFT),大大降低了妈妈的计算复杂性,但到目前为止这种方法有限到位于同质背景中或在层状介质背景的同一层中。对于位于不同层的物体的问题,FFT不能直接在正常的方向上施加到层界面,因此MOM解决方案需要大量的计算机存储器和CPU时间。为了克服这些困难,在本文中提出了与域分解方法(DDM)结合的BCGS-FFT方法。利用BCGS-FFT-DDM,首先在几个子域中分别处理物体或不同部分,每个子域都满足3-D偏移不变性和相关性;然后考虑不同对象/部件之间的耦合,其中可以构建耦合矩阵以满足2-D Shift-Invariance属性,如果对象/子域具有在$ XY $平面上具有相同的网格大小。因此,可以分别应用3-D FFT和2-D FFT以加速自我和相互耦合的矩阵矢量乘法。通过这样做,防止矩阵被明确地形成为包括自耦合部件,并且求解器会很好地收敛到具有相当大的导电性对比的问题。用于自耦矩阵 - 向量乘法的存储器和CPU时间的计算复杂性是$ O(n _ {z}} <^> {q} n_ {x} n_ {x} n_ {x} n_ {y})$和$ o(n _ {{z n_ {x} n_ {y} log(n _ {z} n_ {x} n_ {y}),分别为互联耦合矩阵 - 向量乘法是$ o(n _ {{z} {{{z} n_ {q} n_ {x} n_ {x} n_ {x} n_ {{{{z} n _ {{z} n _ {{z} n _ {{z} n _ {{z} {q} n_ {x} n_ {x} n_ {y} log(n_ {x} n_ {y})分别为提出的方法,其中$ n_ {x} $和$ n_ {y} $是$ x $ - 和$ y $ -directions中所有子域的单元格号,以及$ n _ {{z}} <^> {p} $和$ n _ {{z}} <^> {q $ {z} $ -direction中的不同子域的单元格号。提出了不同地下感测场景的几个结果以显示该方法的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号