首页> 外文期刊>Annals of the New York Academy of Sciences >Macromolecular Crystallization in Microgravity Generated by a Superconducting Magnet
【24h】

Macromolecular Crystallization in Microgravity Generated by a Superconducting Magnet

机译:超导磁体在微重力中的大分子结晶

获取原文
获取原文并翻译 | 示例
           

摘要

About 30% of the protein crystals grown in space yield better X-ray diffraction data than the best crystals grown on the earth. The microgravity environments provided by the application of an upward magnetic force constitute excellent candidates for simulating the microgravity conditions in space. Here, we describe a method to control effective gravity and formation of protein crystals in various levels of effective gravity. Since 2002, the stable and long-time durable microgravity generated by a convenient type of superconducting magnet has been available for protein crystal growth. For the first time, protein crystals, orthorhombic lysozyme, were grown at microgravity on the earth, and it was proved that this microgravity improved the crystal quality effectively and reproducibly. The present method always accompanies a strong magnetic field, and the magnetic field itself seems to improve crystal quality. Microgravity is not always effective for improving crystal quality. When we applied this microgravity to the formation of cubic porcine insulin and tetragonal lysozyme crystals, we observed no dependence of effective gravity on crystal quality. Thus, this kind of test will be useful for selecting promising proteins prior to the space experiments. Finally, the microgravity generated by the magnet is compared with that in space, considering the cost, the quality of microgravity, experimental convenience, etc., and the future use of this microgravity for macromolecular crystal growth is discussed.
机译:在太空中生长的大约30%的蛋白质晶体比在地球上生长的最佳晶体产生更好的X射线衍射数据。通过施加向上的磁力所提供的微重力环境构成了用于模拟空间中的微重力条件的极好的候选者。在这里,我们描述了一种在各种有效重力水平下控制有效重力和蛋白质晶体形成的方法。自2002年以来,由方便类型的超导磁体产生的稳定且长期耐用的微重力可用于蛋白质晶体的生长。蛋白质晶体,正交晶体的溶菌酶,是在地球上的微重力下首次生长的,并且证明了这种微重力有效且可重复地改善了晶体质量。本方法总是伴随着强磁场,并且磁场本身似乎改善了晶体质量。微重力并不总是有效地改善晶体质量。当我们将这种微重力应用于立方猪胰岛素和四方溶菌酶晶体的形成时,我们发现有效重力对晶体质量没有依赖性。因此,这种测试对于在太空实验之前选择有前景的蛋白质将是有用的。最后,将磁体产生的微重力与空间中的微重力进行比较,考虑到成本,微重力的质量,实验方便性等,并讨论了该微重力在高分子晶体生长中的未来用途。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号