...
首页> 外文期刊>Annals of nuclear energy >Modeling reactivity devices for advanced CANDU reactors using the code DRAGON
【24h】

Modeling reactivity devices for advanced CANDU reactors using the code DRAGON

机译:使用代码DRAGON为高级CANDU反应器建模反应装置

获取原文
获取原文并翻译 | 示例

摘要

Full core analysis of typical power reactors generally performed uses few group diffusion theory, it is necessary to generate beforehand, using a lattice code, the required few group cross-sections and diffusion coefficients associated with each region in the core. For the ACR~(TM) (Advanced CANDU Reactor), the problem is more complex because these reactors contain vertical reactivity devices that are located between two horizontal fuel bundles. The usual calculation scheme relies in this case on a 2D fuel cell calculation to generate the few group fuel properties and on a 3D supercell calculation for the analysis of the reactivity devices present in the core. Because of its complexity, the supercell calculations have usually been performed using simplified fuel geometries. The development of new geometry features in DRAGON and the availability of faster computers have made it possible to improve the 2D cell and 3D supercell models by using explicitly 3D assemblies of clusters to simulate the reactivity devices in CANDU reactors, including the ACR. These studies will thus improve the fine reactor core results by generating more accurate and appropriate reactor databases. In this paper, we will review the lattice-cell/supercell calculation procedure using the code DRAGON by introducing a new supercell model. The use of such an explicit 3D geometry implies a very fine spatial mesh discretization that can generate a large number of regions leading to problems that cannot be solved by the collision probability (CP) method. The method of characteristics (MoC) is then the only alternative for such cases. A comparison of results using these two methods will also be presented for 3D models with a coarse mesh discretization.
机译:通常对典型功率反应堆进行的全堆芯分析使用的是极少的基团扩散理论,因此必须事先使用晶格码生成所需的极少的基团横截面以及与堆芯中每个区域相关的扩散系数。对于ACRTM(高级CANDU反应堆),问题更加复杂,因为这些反应堆包含位于两个水平燃料束之间的垂直反应装置。在这种情况下,通常的计算方案依赖于2D燃料电池计算来生成少量的组燃料属性,并依赖于3D超级电池计算来分析堆芯中存在的反应装置。由于其复杂性,通常使用简化的燃料几何形状来执行超级电池的计算。 DRAGON中新的几何特征的发展以及更快的计算机的可用性,使得可以通过使用显式的3D簇组装来模拟CANDU反应堆中的反应装置(包括ACR)来改善2D单元和3D超级单元模型。因此,这些研究将通过生成更准确和适当的反应堆数据库来改善精细反应堆堆芯的结果。在本文中,我们将通过引入新的超级单元模型来审查使用代码DRAGON进行的晶格单元/超级单元计算过程。使用这种明确的3D几何图形意味着非常精细的空间网格离散化,可以生成大量区域,从而导致无法通过碰撞概率(CP)方法解决的问题。因此,特征方法(MoC)是此类情况的唯一替代方法。对于使用粗网格离散化的3D模型,还将给出使用这两种方法的结果的比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号