首页> 外文期刊>Annals of nuclear energy >Stability analysis of the Backward Euler time discretization for the pin-resolved transport transient reactor calculation
【24h】

Stability analysis of the Backward Euler time discretization for the pin-resolved transport transient reactor calculation

机译:销分解瞬态反应堆计算的反向欧拉时间离散的稳定性分析

获取原文
获取原文并翻译 | 示例
           

摘要

Three-dimensional, full core transport modeling with pin-resolved detail for reactor dynamic simulation is important for some multi-physics reactor applications. However, it can be computationally intensive due to the difficulty in maintaining accuracy while minimizing the number of time steps. A recently proposed Transient Multi-Level (TML) methodology overcomes this difficulty by use multi-level transient solvers to capture the physical phenomenal in different time domains and thus maximize the numerical accuracy and computational efficiency. One major problem with the TML method is the negative flux/precursor number density generated using large time steps for the MOC solver, which is due to the Backward Euler discretization scheme. In this paper, the stability issue of Backward Euler discretization is first investigated using the Point Kinetics Equations (PKEs), and the predicted maximum allowed time step for SPERT test 60 case is shown to be less than 10 ms. To overcome this difficulty, linear and exponential transformations are investigated using the PKEs. The linear transformation is shown to increase the maximum time step by a factor of 2, and the exponential transformation is shown to increase the maximum time step by a factor of 5, as well as provide unconditionally stability above a specified threshold. The two sets of transformations are then applied to TML scheme in the MPACT code, and the numerical results presented show good agreement for standard, linear transformed, and exponential transformed maximum time step between the PKEs model and the MPACT whole core transport solution for three different cases, including a pin cell case, a 3D SPERT assembly case and a row of assemblies ("striped assembly case") from the SPERT model. Finally, the successful whole transient execution of the stripe assembly case shows the ability of the exponential transformation method to use 10 ms and 20 ms time steps, which all failed using the standard method. (C) 2015 Elsevier Ltd. All rights reserved.
机译:三维全堆芯运输模型,其中销子分解的细节用于反应堆动态仿真,对于某些多物理堆反应堆应用而言非常重要。然而,由于难以保持准确性同时最小化时间步长的数量,因此其计算量很大。最近提出的瞬态多级(TML)方法通过使用多级瞬态求解器来捕获不同时域中的物理现象,从而克服了这一难题,从而最大程度地提高了数值精度和计算效率。 TML方法的一个主要问题是MOC求解器使用较大时间步长会产生负通量/前体数密度,这是由于反向Euler离散化方案所致。在本文中,首先使用点动力学方程(PKE)研究了向后Euler离散化的稳定性问题,并且SPERT测试60情况的预测最大允许时间步长小于10 ms。为了克服这个困难,使用PKE对线性和指数变换进行了研究。线性变换显示最大时间步长增加了2倍,而指数变换显示最大时间步长增加了5倍,并提供了超过指定阈值的无条件稳定性。然后将这两组转换应用于MPACT代码中的TML方案,并且所给出的数值结果表明,对于三种不同的PKE模型与MPACT整体核心传输解决方案,标准,线性转换和指数转换的最大时间步长具有良好的一致性。案例,包括针式单元案例,3D SPERT组件案例和SPERT模型中的一行组件(“条形组件案例”)。最后,成功完成条带装配案例的整个瞬态执行,表明了指数转换方法使用10 ms和20 ms时间步长的能力,而使用标准方法则全部失败。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号