首页> 外文期刊>Annals of nuclear energy >Control and thermal analysis for SCWR startup
【24h】

Control and thermal analysis for SCWR startup

机译:SCWR启动的控制和热分析

获取原文
获取原文并翻译 | 示例
           

摘要

Startup system, the design of startup sequences analysis is an important part of SCWR design. A thermal hydraulic system analysis code for supercritical water reactor named SCTRAN is used to model the entire startup system based on the circulation loop for startup and once-through direct cycle. The problem of the heat transfer coefficient (HTC) does not accurately capture deterioration phenomenon, the HTC is calculated as a discontinuity in the mode transfer region, its low prediction accuracy above the quasi-critical region have been solved by the new wall heat transfer model. Especially, the look-up table would not be used to obtain the HTC and achieves high prediction accuracy across the critical region, unless the pressure is higher than 19 MPa. After that, to get a smooth recirculation variable pressure startup process, the system model integrates the control system which can controls the temperature, the steam drum water level, the thermal power, and the coolant flow rate. Based on the CSR1000 core and entire once-through direct cycle and circulation loop for startup, four stages under control systems, from low pressure to full power condition in recirculation startup process, were analyzed with code SCTRAN and wall heat transfer model was modified. The calculation results show that the recirculation system can startup from subcritical state to full power state without issue of CHF. The control system can control the parameters quite well and maximum cladding temperature (MCST) can be limited under 650 degrees C in the startup process. The modified SCTRAN code in this paper can further expand the computational range and computational accuracy. The full-scale control system can meet the needs of parameters expected response. (C) 2019 Elsevier Ltd. All rights reserved.
机译:启动系统中,启动顺序分析的设计是SCWR设计的重要组成部分。用于超临界水反应堆的热工液压系统分析代码SCTRAN用于基于启动和一次性直接循环的循环回路对整个启动系统进行建模。传热系数(HTC)的问题无法准确地捕获劣化现象,HTC被计算为模式传递区域中的不连续性,新的壁面传热模型解决了其在准临界区域之上的低预测精度。尤其是,除非压力高于19 MPa,否则查询表将不会用于获取HTC并在关键区域实现高预测精度。此后,为了获得平稳的再循环可变压力启动过程,系统模型集成了可以控制温度,蒸汽鼓水位,火力和冷却剂流量的控制系统。基于CSR1000核心和整个启动过程的直通式直流循环回路,利用代码SCTRAN分析了从低压到全功率工况的控制系统的四个阶段,代码为SCTRAN,并修改了壁传热模型。计算结果表明,该再循环系统可以从亚临界状态启动到全功率状态,而不会发出CHF。控制系统可以很好地控制参数,并且在启动过程中可以将最高包层温度(MCST)限制在650摄氏度以下。本文中改进的SCTRAN代码可以进一步扩展计算范围和计算精度。满量程控制系统可以满足参数期望响应的需求。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号