首页> 外文期刊>Annals of nuclear energy >Sensitivity analysis of in-vessel accident progression behavior in Fukushima Daiichi Nuclear Power Plant Unit 3
【24h】

Sensitivity analysis of in-vessel accident progression behavior in Fukushima Daiichi Nuclear Power Plant Unit 3

机译:福岛第一核电站3号机组船内事故进展行为的敏感性分析

获取原文
获取原文并翻译 | 示例
           

摘要

The Great East Japan earthquake and the subsequent tsunami which occurred on March 11th 2011 put the operating Units 1-3 at Fukushima Daiichi Nuclear Power Plant (NPP) in severe accident conditions resulting from loss of offsite power and AC power. It is believed that the Station Blackout (SBO) and loss of heat sink led to core meltdown in all Units 1-3. Despite past research efforts on the severe accident progression in Fukushima NPP Units 1-3, there are still knowledge gaps and uncertainties existing in understanding of the severe accident scenarios and consequences.Hence, this study aims at identifying the modeling uncertainties and addressing the sensitivity parameters in Fukushima NPP Unit 3. A more detailed Control Volume (CV) division model of the reactor core region has been developed to better simulate the thermal-hydraulic behavior of liquid water and steam, which is considered to be crucial in simulating the core uncovery and degradation process. The boundary conditions such as the water injection rates by the Reactor Core Isolation Cooling (RCIC) system, the High Pressure Core Injection (HPCI) system and Alternative Water Injection (AWI) to the reactor core were determined based on the available reactor water level and pressure measurement data. The current study suggested that the local vapor heatup behavior could influence the core melting and relocation behavior, which can lead to different core degradation scenarios. With the current modeling assumptions in MELCOR, the best estimate conditions for RPV pressure history of Unit 3 suggested that 6 SRVs could have remained open when the major core slumping took place at ca. 45:20 h (ca. 12:00, March 13) with 50 to 80 tons of water inventory in the lower plenum. The current analysis also suggested that the efficiency of the AWI to the reactor core could have been only 15% as of reported by TEPCO with the current modeling conditions if debris dryout was assumed to have occurred at around ca. 54.0 h (20:40 h, March 13th). As for lower head failure, there is still large uncertainty in predicting lower head failure time with Larson-Miller creep rupture model in the current MELCOR modeling. (C) 2019 Elsevier Ltd. All rights reserved.
机译:2011年3月11日发生的东日本大地震和随后的海啸使福岛第一核电站(NPP)的1-3号机组处于因事故现场电力和交流电力中断而导致的严重事故情况下。据信,所有1-3号机组的电站停电(SBO)和散热片损失均导致堆芯熔化。尽管过去曾对福岛核电厂1-3号机组的严重事故进展进行过研究,但在了解严重事故情况和后果方面仍存在知识空白和不确定性,因此,本研究旨在确定建模不确定性并解决敏感性参数在福岛核电厂3号机组中。已经开发了更详细的反应堆堆芯区域控制量(CV)划分模型,以更好地模拟液态水和蒸汽的热工行为,这对于模拟堆芯的发现和分析至关重要。降解过程。根据可用的反应堆水位和压力,确定边界条件,例如通过堆芯隔离冷却(RCIC)系统,高压堆芯(HPCI)系统和向堆芯的替代注水(AWI)的注水速率。压力测量数据。当前的研究表明,局部蒸汽加热行为可能会影响堆芯的熔化和迁移行为,从而导致不同的堆芯退化情况。根据MELCOR中的当前模型假设,3号机组RPV压力历史记录的最佳估计条件表明,当主要岩心塌陷在大约190℃时,可能有6个SRV保持打开状态。 45:20小时(3月13日约12:00),下气室有50至80吨的水库存。目前的分析还表明,如果假定碎片干燥发生在大约30℃左右,那么在当前的建模条件下,TEPCO对反应堆堆芯的AWI效率仅为15%。 54.0小时(3月13日20:40小时)。至于较低的头部失效,在当前的MELCOR模型中,使用Larson-Miller蠕变断裂模型预测较低的头部失效时间仍然存在很大的不确定性。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号