首页> 外文期刊>Annals of nuclear energy >A new framework for sampling-based uncertainty quantification of the six-group reactor kinetic parameters
【24h】

A new framework for sampling-based uncertainty quantification of the six-group reactor kinetic parameters

机译:基于采样的六组反应堆动力学参数不确定性量化的新框架

获取原文
获取原文并翻译 | 示例
           

摘要

Delayed neutrons, which are described by kinetic parameters, are significant for nuclear reactor operation as they make nuclear reactors controllable. Modern lattice physics codes such as TRITON and Polaris in SCALE code system, generate kinetic parameters for a given material composition. The calculation is performed by summation of the delayed neutron data for each precursor isotope and then weighting is performed by real and/or adjoint neutron spectrum. Quantifying uncertainties in the weighted kinetic parameters is important for assembly and core calculations. Understanding uncertainty in modeling scenarios involve kinetic parameters (e.g. transients), requires propagating uncertainty in the weighted kinetic parameters due to uncertainties in the fundamental nuclear data libraries, including delayed neutron data. In this work, uncertainty analysis of the homogenized (also called weighted or macroscopic) kinetic parameters has been performed using Sampler, a module in SCALE code system, to investigate the effect of fundamental nuclear and delayed neutron data uncertainties on the weighted kinetic parameters. Two major sources of uncertainties were considered: (1) fundamental nuclear data (i.e. cross-sections, fission yield, decay data) and (2) nuclide-dependent group-wise delayed neutron data based on reported experimental measurements. In this study, a new capability was developed through SCALE code system to allow propagation of delayed neutron data uncertainties. Preliminary analysis demonstrated 7% uncertainty in beta(eff) at Beginning of Life (BOL) and increased to 15% after fuel burnup. Decay constant groups showed lower uncertainty than delayed neutron fraction groups, both at BOL and End of Life (EOL). Delayed neutron fraction responses showed high correlation to each other which is expected to be due to the cross-section covariances reported in SCALE data libraries as well as the normalization condition of the nuclide-dependent DNF. Different sources of U-235 delayed neutron data were compared, and the results showed that the uncertainty calculated by Tuttle data was bounded by other sources. The current study can be extended to calculate kinetic parameters and their uncertainties for more advanced LWR applications. Published by Elsevier Ltd.
机译:由动力学参数描述的延迟中子对核反应堆的运行很重要,因为它们使核反应堆可控。现代晶格物理学代码(例如SCALE代码系统中的TRITON和Polaris)可生成给定材料成分的动力学参数。通过对每个前体同位素的延迟中子数据求和来执行计算,然后通过真实和/或伴随中子光谱进行加权。量化加权动力学参数的不确定性对于组装和堆芯计算很重要。理解建模场景中的不确定性涉及动力学参数(例如瞬变),由于基本核数据库(包括延迟中子数据)的不确定性,需要在加权动力学参数中传播不确定性。在这项工作中,已经使用SCALE代码系统中的模块Sampler对均质(也称为加权或宏观)动力学参数进行不确定性分析,以研究基本核和延迟中子数据不确定性对加权动力学参数的影响。考虑了两个不确定性的主要来源:(1)基本核数据(即横截面,裂变产率,衰变数据)和(2)基于已报道的实验测量结果的依赖核素的群延迟中子数据。在这项研究中,通过SCALE代码系统开发了一种新功能,可以传播延迟的中子数据不确定性。初步分析表明,生命开始(BOL)时beta(eff)的不确定性为7%,燃尽后增加到15%。在BOL和寿命终止(EOL)方面,衰变常数组的不确定性均低于延迟中子分数组。延迟的中子分数响应显示出彼此之间的高度相关性,这可能是由于SCALE数据库中报告的截面协方差以及核素依赖性DNF的归一化条件所致。比较了不同来源的U-235延迟中子数据,结果表明,塔特尔数据计算出的不确定性受到其他来源的限制。当前的研究可以扩展到为更先进的轻水堆应用计算动力学参数及其不确定性。由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号