首页> 外文期刊>Annals of nuclear energy >Experimental investigations on out-of-pile single rod test using fuel simulator and assessment of FRAPTRAN 2.0 ballooning model
【24h】

Experimental investigations on out-of-pile single rod test using fuel simulator and assessment of FRAPTRAN 2.0 ballooning model

机译:使用燃料模拟器进行桩外单杆试验的实验研究以及FRAPTRAN 2.0膨胀模型的评估

获取原文
获取原文并翻译 | 示例
       

摘要

The extent of clad tube ballooning is important when analyzing the upper limits of coolant-channel blockage and subsequent planning of emergency core cooling system (ECCS) design strategy. As per revised ECCS acceptance criteria, the safety-analysis code system should be able to predict precisely fuel rod behavior to simulate a realistic safety analysis under off-design conditions. Considering these aspects, the present investigation was carried out to access the capability of FRAPTRAN 2.0 code to predict the ballooning behavior of cladding at various heating rates and internal pressures. Three tests at (4.5, 5.5, and 6.5) MPa and heating rates of 1.7-4 K/s were performed on a facility named 'FISRBIT' (Facility to Investigate Single-Rod Behavior In Transient) under inert gas atmosphere. Transient temperature, pressure, and deformation were recorded during the experiment at three axial positions over the internally heated Zircaloy-4 clad tube. Ballooning started at the location with the highest temperature; then propagated in the axial directions. Under fast transient heating, the balloon was confined near the highest temperature site, but at slower rates, an axially elongated balloon was observed. The test time between initiation of ballooning and rupture varied from 25 to 100 s depending on heating rate and internal pressure. The maximum hoop-strain prediction based on the hoop-stress calculation by the Rosinger model was better than the FRACAS-I and BALON-2 models. Using the Rosinger model, the hoop stress increased gradually until burst; hence, it was judged to simulate the physics of ballooning adequately. The rupture timing prediction by the FRAPTRAN 2.0 code was sooner than in the experimental results. One reason for the early rupture prediction was the time-independent behavior of the plastic model adopted by the code for modeling the ballooning phenomenon. (C) 2018 Elsevier Ltd. All rights reserved.
机译:在分析冷却液通道堵塞的上限以及随后的应急堆芯冷却系统(ECCS)设计策略规划时,包层管膨胀的程度非常重要。根据修订的ECCS验收标准,安全分析代码系统应能够准确预测燃料棒的行为,以模拟非设计条件下的实际安全分析。考虑到这些方面,进行了本研究以访问FRAPTRAN 2.0代码的功能,以预测在各种加热速率和内部压力下包层的膨胀行为。在惰性气体气氛下,在名为“ FISRBIT”(研究瞬态单杆行为的设施)的设施上进行了三个试验,分别为(4.5、5.5和6.5)MPa,加热速率为1.7-4 K / s。在实验过程中,在内部加热的Zircaloy-4复合管的三个轴向位置记录了瞬态温度,压力和变形。热气球始于温度最高的地方。然后沿轴向传播。在快速瞬态加热下,球囊被限制在最高温度位置附近,但是在较慢的速率下,观察到轴向伸长的球囊。在开始膨胀和破裂之间的测试时间从25到100 s不等,具体取决于加热速率和内部压力。基于Rosinger模型的环向应力计算的最大环向应变预测优于FRACAS-I和BALON-2模型。使用Rosinger模型,环向应力逐渐增加,直到破裂。因此,人们认为可以充分模拟气球的物理过程。用FRAPTRAN 2.0代码预测破裂时间要比实验结果更快。进行早期破裂预测的原因之一是该代码采用的塑性模型的时间独立行为来对膨胀现象进行建模。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号