...
首页> 外文期刊>Annals of nuclear energy >A decoupled Mechanical Shim core control strategy for a pressurized water reactor using feedforward compensation and a multimodel approach
【24h】

A decoupled Mechanical Shim core control strategy for a pressurized water reactor using feedforward compensation and a multimodel approach

机译:采用前馈补偿和多模型方法的压水堆机械轴心解耦控制策略

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The advanced Mechanical Shim (MSHIM) core control strategy employs two separate and independent control rod banks, namely the MSHIM control banks (M-banks) and axial offset (AO) control bank (AO-bank), for automatic reactivity/temperature and axial power distribution control respectively. The M-banks and AO-bank are controlled by two closed-loop controllers, independently, called the coolant average temperature (T-avg) controller and the AO controller. Since the motion of the M-banks and AO-bank can both affect the T-avg and AO, an interlocking design between the Tag controller and the AO controller is adopted in the MSHIM control strategy to avoid the interference between the two controllers during power maneuvers. This design can enhance the stability of the MSHIM control system by avoiding the simultaneous movement of the M-banks and AO-bank and keeping the priority of the M-bank movement. However, the AO control performance is degraded at the same time. In the present study, a feedforward compensation decoupling method and a multimodel approach have been used to eliminate the coupling effect between the two controllers in the MSHIM control system during a wide range of power maneuvers. A multiple feedforward compensation system has been designed with integration of the feedforward compensators for the T-avg and AO controllers at five equilibrium conditions using the multimodel approach. By implementing it in the MSHIM control system, the interlocking between the M-banks and the AO-bank can be released to realize the independent and decoupling control between the T-avg and AO. The effectiveness of the decoupled MSHIM control strategy has been verified by comparing its control performance with that of the original MSHIM control strategy during typical load change transients of the AP1000 reactor. The obtained results show that superior and decoupling control of the T-avg and AO can be achieved using the proposed decoupled MSHIM control strategy. (C) 2018 Elsevier Ltd. All rights reserved.
机译:先进的机械垫片(MSHIM)核心控制策略采用两个独立的控制杆组,即MSHIM控制组(M-bank)和轴向偏移(AO)控制组(AO-bank),用于自动反应/温度和轴向配电控制。 M组和AO组由两个闭环控制器分别控制,分别称为冷却剂平均温度(T-avg)控制器和AO控制器。由于M-bank和AO-bank的运动均会影响T-avg和AO,因此MSHIM控制策略中采用了Tag控制器和AO控制器之间的互锁设计,以避免在通电期间两个控制器之间的干扰演习。这种设计可以避免M-bank和AO-bank的同时运动,并保持M-bank的优先运动,从而可以增强MSHIM控制系统的稳定性。但是,AO控制性能会同时下降。在当前的研究中,前馈补偿解耦方法和多模型方法已被用来消除大功率操纵中MSHIM控制系统中两个控制器之间的耦合效应。设计了一个多前馈补偿系统,使用多模型方法在五个平衡条件下集成了用于T-avg和AO控制器的前馈补偿器。通过在MSHIM控制系统中实施,可以释放M-bank和AO-bank之间的互锁,从而实现T-avg和AO之间的独立和解耦控制。通过在典型的AP1000反应堆负荷变化瞬变期间,将解耦的MSHIM控制策略的控制性能与原始MSHIM控制策略的控制性能进行比较,从而验证了该方法的有效性。获得的结果表明,使用提出的解耦MSHIM控制策略可以实现T-avg和AO的上级和解耦控制。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号