...
首页> 外文期刊>American Mineralogist >Structural characterization of biogenic Mn oxides produced in seawater by the marine bacillus sp. strain SG-1
【24h】

Structural characterization of biogenic Mn oxides produced in seawater by the marine bacillus sp. strain SG-1

机译:海洋芽孢杆菌在海水中产生的生物锰氧化物的结构表征。 SG-1株

获取原文
获取原文并翻译 | 示例
           

摘要

Natural Mn-oxide nanoparticles and grain coatings are ubiquitous in the environment and profoundly impact the water quality and quality of sediments through their ability to degrade and sequester contaminants. These oxides, which are believed to form dominantly via oxidation of Mn2+ by marine and freshwater bacteria, have extremely high sorptive capacities for heavy metals. We have used XANES, EXAFS, and synchrotron (SR)-XRD techniques to study biogenic Mn oxides produced by spores of the marine Bacillus sp. strain SG-1 in seawater as a function of reaction time under in-situ conditions. An EXAFS model was developed to fully account for the structure and features in the data, providing realistic structural information. The first observed biogenic solid-phase Mn-oxide product is a layered phyllomanganate with hexagonal sheet symmetry and an Mn-oxidation state similar to that in -MnO2, between 3.7 and 4.0. XRD and SEM-EDS data show the biooxides to have a phyllomanganate 10 Å basal plane spacing and an interlayer containing Ca. With time, a phyllomanganate oxide with pseudo-orthogonal sheet symmetry appears. Fits to these EXAFS spectra suggest the octahedral layers have relatively few Mn octahedral site vacancies in the lattice and the layers bend to accommodate Jahn-Teller distortions creating the change in symmetry. A reaction mechanism is proposed to account for the observed products. The phyllomanganate oxides observed in this study may be the same as the most abundant Mn-oxide phases suspended in the oxic and sub-oxic zones of the oceanic water column that are of global importance in trace metal and nutrient cycling.
机译:天然氧化锰纳米颗粒和颗粒涂层在环境中无处不在,并通过其降解和螯合的能力深刻影响沉积物的水质和 质量。 >污染物。这些氧化物据信主要是通过海洋和淡水细菌氧化Mn 2 + 形成 ,对重金属具有极高的吸附能力。 。我们已经使用XANES,EXAFS和同步加速器(SR)-XRD技术研究海洋芽孢杆菌(sac)的孢子产生的生物Mn氧化物。在原位条件下海水中SG-1菌株作为反应时间的函数。开发EXAFS模型以完全考虑数据中的结构和特征,从而提供现实的结构信息。观察到的第一个生物固相 Mn氧化物产物是层状页锰酸盐,具有六边形 片状对称性,并且Mn氧化态类似于 -MnO 2 ,介于3.7和4.0之间。 XRD和SEM-EDS数据表明,生物氧化物 的叶锰酸根基面间距为10Å,并且 的中间层含有Ca。随着时间的流逝,出现具有伪正交薄片对称性的页锰氧化物 。对这些 EXAFS光谱的拟合表明,八面体层的晶格中具有相对 几个Mn八面体位点空位,并且这些层 弯曲以适应Jahn-Teller变形创建对称的change 。提出了一种反应机制来解释 观察到的产物。 研究中观察到的叶锰酸根氧化物可能与悬浮在海水含氧和亚含氧区中的最丰富的Mn-氧化物相 < / sup>在微量金属和营养物 循环中具有全球重要性的列。

著录项

  • 来源
    《American Mineralogist》 |2005年第9期|00001342-00001357|共16页
  • 作者单位

    Stanford Synchrotron Radiation Laboratory, Menlo Park, California 94025, U.S.A.;

    Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, U.S.A.;

    Stanford Synchrotron Radiation Laboratory, Menlo Park, California 94025, U.S.A.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号