首页> 外文期刊>American Mineralogist >Experimental constraints on rutile saturation during partial melting of metabasalt at the amphibolite to eclogite transition, with applications to TTG genesis
【24h】

Experimental constraints on rutile saturation during partial melting of metabasalt at the amphibolite to eclogite transition, with applications to TTG genesis

机译:玄武岩在角闪石向榴辉岩过渡过程中部分玄武岩熔融过程中金红石饱和度的实验约束及其在TTG生成中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

TiO2 solubility in rutile-saturated felsic melts and coexisting minerals was determined at 1.5–3.5 GPa, 750–1250 °C, and 5–30 wt% H2O. TiO2 solubility in the melt primarily increases with temperature and melt basicity; it increases slightly with water content in the melt, and it decreases with pressure. A general TiO2 solubility model was obtained and is expressed as: ln(TiO2)melt = ln(TiO2)rutile + 1.701 – (9041/T) – 0.173P + 0.348FM + 0.016H2O, where TiO2 and H2O are in wt%, T is in Kelvin, P in GPa, and FM is the melt composition parameter given by FM = (1/Si)·[Na + K + 2(Ca + Fe + Mn + Mg)]/Al, in which the chemical symbols represent cation fractions. TiO2 solubility in amphibole, garnet, and clinopyroxene also increases with temperature and empirical equations describing this temperature dependence were derived. These data were used to assess the protolith TiO2 content required for rutile saturation during partial melting of hydrous metabasalt at the amphibolite to eclogite transition. The results show that only 0.8–1.0 wt% TiO2 is required for rutile saturation during low-degree (<20%) melting. Rutile is stable up to ~1150 °C with 1.6 wt% TiO2 in the protolith and 30–40% melting for dehydration melting and up to ~1050 °C and 50–60% melting for fluid-present melting. The data also show that 0.7–0.8 wt% TiO2 in the protolith is needed for rutile saturation during subsolidus dehydration. Therefore, nearly all basaltic protoliths in deep-crustal settings and subduction zones will be saturated with rutile during subsolidus dehydration and low-degree melting at hydrous conditions.
机译:TiO 2 在金红石饱和长英质熔体和共存的 矿物中的溶解度在1.5–3.5 GPa,750–1250 °C和5– 30 wt%H 2 O。 TiO 2 在熔体 中的溶解度主要随温度和熔体碱度而增加;它随熔体中水含量的增加而略有增加,而随着压力的增加而有所减少。获得了一个普通的TiO 2 溶解度模型,其 表示为:ln(TiO 2 熔体 = ln( TiO 2 金红石 + 1.701 – (9041 / T)– 0.173P + 0.348FM + 0.016H 2 O,其中TiO 2 H 2 O的重量百分比,T的单位为开尔文,P的单位为GPa,FM为熔体< FM =(1 / Si)·[Na + K + 2(Ca + Fe + Mn + Mg)] / Al给出的sup> 组成参数,其中化学符号表示 阳离子分数。 TiO 2 在角闪石,石榴石和 斜环茂中的溶解度也随温度升高而增加,并得出描述该温度依赖性的经验 方程。 sup>这些数据用于评估在斜生辉石到榴辉岩过渡过程中含水偏玄武岩 部分熔融期间金红石饱和所需的原石TiO 2 含量 。结果表明 在低度熔化(<20%)时,金红石饱和 仅需要0.8–1.0 wt%的TiO 2 。金红石在高达 〜1150°C时是稳定的,其中原生石中的TiO 2 为1.6 wt%,熔融脱水时熔化的30%至40% 到〜1050°C和50-60% 熔化以进行流体存在的熔化。数据还表明,在 亚固相线脱水过程中,原石中需要0.7–0.8 wt%TiO 2 才能使金红石饱和。因此,在水固相下的亚固相脱水和低度熔融 期间,几乎在深壳环境和俯冲带中的所有玄武质原岩 都将被金红石浸透。条件。

著录项

  • 来源
    《American Mineralogist》 |2009年第9期|1175-1186|共12页
  • 作者单位

    Laboratory of Metallogenic Dynamics, Guangzhou Institute of Geochemistry, CAS, 510640, Guangzhou, China|Bayerisches Geoinstitut, Universit?t Bayreuth, D-95440 Bayreuth, Germany;

    Bayerisches Geoinstitut, Universit?t Bayreuth, D-95440 Bayreuth, Germany;

    Bayerisches Geoinstitut, Universit?t Bayreuth, D-95440 Bayreuth, Germany;

    Bayerisches Geoinstitut, Universit?t Bayreuth, D-95440 Bayreuth, Germany;

    Laboratory of Metallogenic Dynamics, Guangzhou Institute of Geochemistry, CAS, 510640, Guangzhou, China;

    Laboratory of Metallogenic Dynamics, Guangzhou Institute of Geochemistry, CAS, 510640, Guangzhou, China;

    Laboratory of Metallogenic Dynamics, Guangzhou Institute of Geochemistry, CAS, 510640, Guangzhou, China;

    Laboratory of Metallogenic Dynamics, Guangzhou Institute of Geochemistry, CAS, 510640, Guangzhou, China|Bayerisches Geoinstitut, Universit?t Bayreuth, D-95440 Bayreuth, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号