...
首页> 外文期刊>Algorithmica >Detecting Fixed Patterns in Chordal Graphs in Polynomial Time
【24h】

Detecting Fixed Patterns in Chordal Graphs in Polynomial Time

机译:在多项式时间内检测和弦图中的固定模式

获取原文
获取原文并翻译 | 示例

摘要

The Contractibility problem takes as input two graphs G and H, and the task is to decide whether H can be obtained from G by a sequence of edge contractions. The Induced Minor and Induced Topological Minor problems are similar, but the first allows both edge contractions and vertex deletions, whereas the latter allows only vertex deletions and vertex dissolutions. All three problems are NP-complete, even for certain fixed graphs H. We show that these problems can be solved in polynomial time for every fixed H when the input graph G is chordal. Our results can be considered tight, since these problems are known to be W-hard on chordal graphs when parameterized by the size of H. To solve Contractibility and Induced Minor, we define and use a generalization of the classic Disjoint Paths problem, where we require the vertices of each of the k paths to be chosen from a specified set. We prove that this variant is NP-complete even when k = 2, but that it is polynomial-time solvable on chordal graphs for every fixed k. Our algorithm for Induced Topological Minor is based on another generalization of Disjoint Paths called Induced Disjoint Paths, where the vertices from different paths may no longer be adjacent. We show that this problem, which is known to be NP-complete when k = 2, can be solved in polynomial time on chordal graphs even when k is part of the input. Our results fit into the general framework of graph containment problems, where the aim is to decide whether a graph can be modified into another graph by a sequence of specified graph operations. Allowing combinations of the four well-known operations edge deletion, edge contraction, vertex deletion, and vertex dissolution results in the following ten containment relations: (induced) minor, (induced) topological minor, (induced) subgraph, (induced) spanning subgraph, dissolution, and contraction. Our results, combined with existing results, settle the complexity of each of the ten corresponding containment problems on chordal graphs.
机译:收缩性问题以两个图G和H作为输入,任务是确定是否可以通过一系列边收缩从G中获得H。诱导次要问题和诱导拓扑次要问题相似,但第一个问题同时允许边缘收缩和顶点删除,而后者仅允许顶点删除和顶点溶解。即使对于某些固定图H,这三个问题都是NP完全的。我们表明,当输入图G为弦时,对于每个固定H可以在多项式时间内解决这些问题。我们的结果可以被认为是紧密的,因为当用H的大小进行参数化时,这些问题在弦图上都是W困难的。要解决可收缩性和诱导次要问题,我们定义并使用经典的不相交路径问题的推广,要求从指定的集合中选择k条路径中每条路径的顶点。我们证明即使k = 2时,该变体也是NP完全的,但是对于固定的k,在弦图上它是多项式时间可解的。我们的诱导拓扑次要算法基于不相交路径的另一种概括,即诱导不相交路径,其中来自不同路径的顶点可能不再相邻。我们表明,这个问题在k = 2时已知是NP完全的,即使k是输入的一部分,也可以在弦图上的多项式时间内解决。我们的结果适合图包含问题的一般框架,其目的是确定是否可以通过一系列指定的图操作将一个图修改为另一个图。允许对四个众所周知的操作进行边删除,边收缩,顶点删除和顶点溶解的组合,可以得到以下十个包含关系:(诱导)次要,(诱导)拓扑次要,(诱导)子图,(诱导)跨子图,溶解和收缩。我们的结果与现有结果相结合,解决了弦图上十个对应的包含问题中每一个的复杂性。

著录项

  • 来源
    《Algorithmica 》 |2014年第3期| 501-521| 共21页
  • 作者单位

    Department of Informatics, University of Bergen, Bergen, Norway;

    School of Engineering and Computing Sciences, Durham University, Durham, UK;

    Department of Informatics, University of Bergen, Bergen, Norway;

    Department of Informatics, University of Bergen, Bergen, Norway;

    Departement d'Informatique, Universite Libre de Bruxelles, Brussels, Belgium;

    School of Engineering and Computing Sciences, Durham University, Durham, UK;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号