...
首页> 外文期刊>Algorithmica >Weak Coverage of a Rectangular Barrier
【24h】

Weak Coverage of a Rectangular Barrier

机译:矩形屏障的弱覆盖

获取原文
获取原文并翻译 | 示例

摘要

Abstract Assume n wireless mobile sensors are initially dispersed in an ad hoc manner in a rectangular region. Each sensor can monitor a circular area of specific diameter around its position, called the sensor diameter. Sensors are required to move to final locations so that they can there detect any intruder crossing the region in a direction parallel to the sides of the rectangle, and thus provide weak barrier coverage of the region. We study three optimization problems related to the movement of sensors to achieve weak barrier coverage: minimizing the number of sensors moved (MinNum), minimizing the average distance moved by the sensors (MinSum), and minimizing the maximum distance moved by any sensor (MinMax). We give an O(n3/2)documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$$O(n^{3/2})$$end{document} time algorithm for the MinNum problem for sensors of diameter 1 that are initially placed at integer positions; in contrast the problem is shown to be NP-complete even for sensors of diameter 2 that are initially placed at integer positions. We show that the MinSum problem is solvable in O(nlogn)documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$$O(n log n)$$end{document} time for the Manhattan metric and sensors of identical diameter (homogeneous sensors) in arbitrary initial positions, while it is NP-complete for heterogeneous sensors. Finally, we prove that even very restricted homogeneous versions of the MinMax problem are NP-complete.
机译:摘要假设n无线移动传感器最初以矩形区域分散在ad hoc的方式中。每个传感器可以监测其位置的特定直径的圆面积,称为传感器直径。传感器需要移动到最终位置,使得它们可以检测到与矩形侧面平行的方向上的任何入侵区域,从而提供该区域的弱屏障覆盖范围。我们研究了与传感器的运动相关的三个优化问题,实现了弱势屏障覆盖:最小化移动的传感器数量(minnum),最大限度地减少由传感器(Minsum)移动的平均距离,并最小化任何传感器移动的最大距离(Minmax )。我们提供O(n3 / 2) documentClass [12pt] {minimal} usepackage {ammath} usepackage {isysym} usepackage {amsfonts} usepackage {amsbsy} usepackage {mathrsfs} usepackage {升级} setLength { oddsidemargin} {-69pt} begin {document} $$ o(n ^ {3/2})$$ end {document}时间算法,用于最初的直径1的传感器的Minnum问题放置在整数位置;相反,即使对于最初放置在整数位置的直径2的传感器,问题也显示为NP完整。我们展示了MINSUM问题在O(nLogn) documentClass [12pt] {minimal} usepackage {ammath} usepackage {isysym} usepackage {amssys} usepackage {amsbsy} usepackage {mathrsfs } usepackage {supmeek} setLength { oddsidemargin} { - 69pt} begin {document} $$ o(n log n)$$ o(n log n)$$ end {document}时间为曼哈顿公制和相同直径的传感器(均匀传感器)在任意初始位置,而对于异质传感器,它是NP-Complete。最后,我们证明了即使是非常受限制的MinMax问题的均匀版本也是NP-Complete。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号