首页> 外文期刊>Aircraft Engineering and Aerospace Technology >On the predicted errors of atmospheric guidance laws
【24h】

On the predicted errors of atmospheric guidance laws

机译:关于大气指导律的预测误差

获取原文
获取原文并翻译 | 示例
       

摘要

Purpose - The purpose of this paper is to develop a novel solution for the predicted error and introduces a systematic method to develop optimal and explicit guidance strategies for different missions. Design/methodology/approach - The predicted error is derived from its basic definition through analytical dynamics. The relations are developed for two classes of systems. First, for systems in which the acceleration commands are truncated at a specified time. Second, for systems in which the corrective maneuvers are cut off at a specified time. The predicted error differential equation is obtained in a way that allows for derivation of several optimal and explicit guidance schemes. Findings - The effect of tangential acceleration in conjunction with autopilot dynamics can be realized in guidance gain and the predicted error. The differential equation of velocity-to-be-gained is obtained assuming the gravitational acceleration to be given as a vectorial function of time. The relations for different velocity profiles are obtained and discussed including the effective navigation ratio. Research limitations/implications - The guidance/control system is modeled as a linear time-varying dynamic and of arbitrary-order. The gravitational acceleration is assumed as a given vectorial function of time. Practical implications - The presented schemes are applicable to both midcourse and terminal guidance laws with/without velocity constraints. Originality/value - Providing a new analytical solution of predicted errors with final position and velocity constraints and their differential equations considering the thrust/drag acceleration and autopilot dynamics in the presence of gravity.
机译:目的-本文的目的是为预测的错误开发一种新颖的解决方案,并介绍一种系统的方法来为不同任务开发最佳和明确的制导策略。设计/方法/方法-预测误差是通过分析动力学从其基本定义中得出的。该关系是针对两类系统开发的。首先,对于在指定时间截断了加速命令的系统。其次,对于在指定时间中断纠正操作的系统。预测误差微分方程以允许推导几种最佳和显式制导方案的方式获得。发现-切向加速度与自动驾驶仪动力学的结合可以在制导增益和预测误差中实现。假设重力加速度是时间的矢量函数,则得出要获得的速度的微分方程。获得并讨论了包括有效导航比在内的不同速度剖面的关系。研究局限/含义-指导/控制系统被建模为线性时变动态和任意阶。重力加速度被假定为时间的给定矢量函数。实际意义-提出的方案适用于有/无速度限制的中段和最终制导律。原创性/价值-考虑到重力作用下的推力/阻力加速度和自动驾驶仪动力学,提供了一种具有最终位置和速度约束以及其微分方程的预测误差的新解析解决方案。

著录项

  • 来源
    《Aircraft Engineering and Aerospace Technology》 |2008年第3期|p.1-13|共13页
  • 作者单位

    S.H. Jalali-Naini, Department of Aerospace Engineering, Sharif University of Technology, Tehran, Iran S.H. Pourtakdoust, Department of Aerospace Engineering, Sharif University of Technology, Tehran, Iran;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 23:18:37

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号