首页> 外文期刊>AIAA Journal >Multiple Osculating Cones’ Waverider Design Method for Ruled Shock Surfaces
【24h】

Multiple Osculating Cones’ Waverider Design Method for Ruled Shock Surfaces

机译:直纹冲击面的多种振荡锥的行波器设计方法

获取原文
获取原文并翻译 | 示例
           

摘要

The traditional osculating cones' (OCs') waverider design method is widely used in hypersonic waverider airframe design. However, it becomes ineffective when the shock strength in each osculating plane varies and the azimuthal pressure gradients appear to be important. To solve this problem, a method called the multiple osculating cones' (multiple-OCs') waverider design method has been developed for ruled shock surfaces. The new method discretizes the ruled shock surface into elements that can be derived from multiple locally conical flows. Multiple locally conical flows indicate that neighboring osculating planes have different shock generators. This feature not only provides a practical way to represent the azimuthal pressure gradients but also extends the variety of waverider designs. Waverider test cases at Ma=6 and Ma=4.5 are performed by the osculating cones with variable shock angles' (OC-VSAs') method and the multiple-OCs' method, respectively. It has been shown that the multiple-OCs' method is applicable to more generalized shock surfaces. The comparison results reveal that the waverider derived by the multiple-OCs' method has a better agreement with the computational fluid dynamics solution than the OC-VSAs' method. Moreover, the new method ensures a more homogeneous inlet captured flowfield on the bottom side of the waverider, which is favorable for hypersonic airframe propulsion integration.
机译:传统的振动锥(OCs)乘波器设计方法被广泛应用于高超音速乘波器的机身设计中。但是,当每个振荡平面中的冲击强度发生变化并且方位压力梯度似乎很重要时,该方法将失效。为了解决这个问题,已经开发出一种用于规则冲击面的方法,称为多重密合圆锥体(multiple-ocs')waverider设计方法。新方法将直纹冲击面离散化为元素,这些元素可以从多个局部圆锥形流中导出。多个局部圆锥形流动表明相邻的振荡平面具有不同的冲击发生器。此功能不仅提供了一种表示方位角压力梯度的实用方法,而且还扩展了乘波体设计的种类。 Ma = 6和Ma = 4.5的Waverider测试用例分别通过具有可变冲击角的(OC-VSAs')方法和多OCs'方法的密合圆锥体进行。结果表明,多重OCs方法适用于更普遍的冲击表面。比较结果表明,与OC-VSAs方法相比,采用多重OCs方法推导的波乘器与计算流体动力学解决方案具有更好的一致性。此外,该新方法可确保在乘波体机底侧获得更均匀的入口捕获流场,这有利于高超音速机身推进集成。

著录项

  • 来源
    《AIAA Journal》 |2020年第2期|854-866|共13页
  • 作者单位

    Xiamen Univ Sch Aerosp Engn Dept Power Engn Xiamen 361005 Peoples R China;

    Nanchang Hangkong Univ Sch Aircraft Engn Dept Aircraft Power Engn Nanchang 330063 Jiangxi Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号