首页> 外文期刊>AIAA Journal >Shock Control of a Low-Sweep Transonic Laminar Flow Wing
【24h】

Shock Control of a Low-Sweep Transonic Laminar Flow Wing

机译:低扫跨音速层流翼的冲击控制

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents a combined experimental and computational study of a low-sweep transonic natural laminar flow (NLF) wing with shock-control bumps (SCBs). A transonic NLF wing with a relatively low sweep angle of 20 deg was chosen for this study. To avoid the complexity of the flow introduced by perforated/slotted walls commonly used for transonic wind-tunnel tests for reducing the wall interference, both experimental tests and computational simulations were conducted with solid wind-tunnel wall conditions. This allows for like-to-like validation of the computational simulation. Optimization of the shock-control bumps was first conducted to design the wind-tunnel test model with bumps. Two critical parameters of the three-dimensional SCBs for shock control (i.e., bump crest position and bump height) were optimized in terms of total drag reduction at the given design point in the wind tunnel. We show that the strong shock wave on the low-sweep NLF wing can be effective controlled by well-designed SCBs deployed along the wing span. The optimized SCBs result in 18.5% pressure drag reduction with 5% viscous drag penalty, and the SCBs also bring some benefits at off-design conditions. The wind-tunnel tests include pressure measurement, particle image velocimetry, and temperature-sensitive paint to provide detailed insight into the shock-control flowfield and to validate the computational simulations. Comparisons include surface pressure profile, velocity distribution, and transition location.
机译:本文提出了具有减震凸块(SCB)的低掠跨音速自然层流(NLF)机翼的组合实验和计算研究。这项研究选择了具有20度相对较低后掠角的跨音速NLF机翼。为了避免通常用于跨音速风洞测试以减少墙干扰的穿孔/开槽墙引入的流量的复杂性,在实心风洞墙条件下进行了实验测试和计算模拟。这允许对计算模拟进行类似验证。首先进行冲击控制凸块的优化,以设计带有凸块的风洞测试模型。就风洞中给定设计点的总减阻而言,优化了用于振动控制的三维SCB的两个关键参数(即凸点的顶部位置和凸点高度)。我们表明,通过在翼展上部署的设计合理的SCB,可以有效地控制低后掠NLF机翼上的强烈冲击波。经过优化的SCB可使压力阻力降低18.5%,粘性阻力损失为5%,并且SCB在非设计条件下也带来了一些好处。风洞测试包括压力测量,颗粒图像测速和对温度敏感的涂料,以提供对冲击控制流场的详细了解并验证计算仿真。比较包括表面压力分布,速度分布和过渡位置。

著录项

  • 来源
    《AIAA Journal》 |2019年第6期|2408-2420|共13页
  • 作者单位

    Nanjing Univ Aeronaut & Astronaut, Coll Aerosp Engn, Nanjing, Jiangsu, Peoples R China|Univ Sheffield, Dept Mech Engn, Sheffield S1 3JD, S Yorkshire, England;

    China Aerodynam Res & Dev Ctr, High Speed Aerodynam Inst, Mianyang 621000, Sichuan, Peoples R China|Univ Sheffield, Dept Mech Engn, Sheffield S1 3JD, S Yorkshire, England;

    Univ Sheffield, Dept Mech Engn, Aerodynam, Sheffield S1 3JD, S Yorkshire, England|AIAA, Reston, VA 20191 USA;

    China Aerodynam Res & Dev Ctr, High Speed Aerodynam Inst, Mianyang 621000, Sichuan, Peoples R China;

    Nanjing Univ Aeronaut & Astronaut, Coll Aerosp Engn, Nanjing, Jiangsu, Peoples R China;

    Nanjing Univ Aeronaut & Astronaut, Coll Aerosp Engn, Nanjing, Jiangsu, Peoples R China;

    Nanjing Univ Aeronaut & Astronaut, Coll Aerosp Engn, Nanjing, Jiangsu, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号