首页> 外文期刊>AIAA Journal >Low-Order Model for Prediction of Trailing-Edge Separation in Unsteady Flow
【24h】

Low-Order Model for Prediction of Trailing-Edge Separation in Unsteady Flow

机译:非定常流动中后缘分离的低阶模型

获取原文
获取原文并翻译 | 示例
           

摘要

Computational and experimental results for pitching and plunging airfoils were used to study the time lag associated with boundary-layer convection and to develop a model that can be used to augment inviscid theoretical methods for unsteady airfoil flows to include the effects of trailing-edge separation and unsteady stall. Computations using an unsteady Reynolds-averaged Navier-Stokes code were used to obtain results for airfoils in steady flow and for several pitch and plunge motions. The motions were selected such that stall occurred only due to trailing-edge separation without leading-edge vortex formation. Viscous corrections to inviscid airfoil theory are first calculated in steady flow by implementing a nonlinear decambering flap to model the effect of the separated boundary layer. Aleading-edge suction parameter, from earlier research, is used to connect the aerodynamic state in unsteady motion with a steady-state condition. Computational results showed that the differences in aerodynamic loads between steady and unsteady flows can be attributed to the boundary-layer convection lag, which can be modeled by choosing an appropriate value of a time-lag parameter tau(2). To provide appropriate viscous corrections to inviscid unsteady calculations, the nonlinear decambering flap is applied with a time lag determined by the tau(2) value, which was found to be essentially independent of motion kinematics for a given airfoil and Reynolds number. The predictions of the aerodynamic loads, unsteady stall, hysteresis loops, and flow reattachment from the low-order model agree well with computational fluid dynamics and experimental results, both for individual cases and for trends between motions. The model was also found to perform as well as existing semi-empirical models while using only a single empirically defined parameter.
机译:使用俯仰和俯冲翼型的计算和实验结果来研究与边界层对流相关的时滞,并开发出一个模型,该模型可用于增加非定常翼型流的无形理论方法,以包括后缘分离和不稳定的失速。使用不稳定的雷诺平均Navier-Stokes码进行计算,可以得出机翼在稳定流动以及几次俯仰和俯冲运动中的结果。选择运动使得失速仅由于后缘分离而没有前缘涡流形成而发生。首先,通过执行非线性去弧形襟翼来模拟分离的边界层的影响,首先在稳定流中计算对无粘性翼型理论的粘性修正。来自较早研究的前沿吸力参数用于将非稳态运动中的空气动力学状态与稳态条件联系起来。计算结果表明,稳态流和非稳态流之间的空气动力载荷之差可归因于边界层对流滞后,可通过选择适当的时滞参数tau(2)进行建模。为了为不平稳的计算提供适当的粘性校正,应应用由tau(2)值确定的时间滞后来进行非线性退角襟翼,对于给定的翼型和雷诺数,该时间滞后基本上与运动学无关。低阶模型对空气动力学负载,非稳态失速,滞后回线和流动重新附着的预测与计算流体动力学和实验结果非常吻合,无论是针对个别情况还是针对运动之间的趋势而言。还发现该模型在仅使用单个经验定义的参数的情况下,其性能与现有的半经验模型一样好。

著录项

  • 来源
    《AIAA Journal》 |2019年第1期|191-207|共17页
  • 作者单位

    North Carolina State Univ, Dept Mech & Aerosp Engn, Aerosp Labs, Raleigh, NC 27695 USA;

    North Carolina State Univ, Dept Mech & Aerosp Engn, Raleigh, NC 27695 USA;

    North Carolina State Univ, Dept Mech & Aerosp Engn, Raleigh, NC 27695 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号