首页> 外文期刊>AIAA Journal >Computational Fluid Dynamics Evaluation of Bleed Slot of Purdue Mach 6 Quiet Tunnel
【24h】

Computational Fluid Dynamics Evaluation of Bleed Slot of Purdue Mach 6 Quiet Tunnel

机译:普渡马6安静隧道放空槽的计算流体力学评价。

获取原文
获取原文并翻译 | 示例
           

摘要

In this study a numerical analysis for the Purdue tunnel bleed slot design (case 7) is conducted for two stagnation pressures. For both of these conditions, recirculation bubbles are observed on the inner (nozzle) and outer (bleed slot) walls of the bleed slot lip. When the Langley tunnel is analyzed for the same order of magnitude stagnation pressure (96.6 kPa), no separation bubble is observed. Reverse flow regions are observed on both sides of the bleed slot lip for this tunnel, when the stagnation pressure is increased one order of magnitude (1034 kPa). The main conclusions of this study are as follows: 1) For the Purdue tunnel, our results show that as the inflow stagnation pressure increases the recirculation bubble formed on the inner (nozzle) wall becomes bigger. This suggests an explanation for observing quiet flow only for low stagnation pressures of 55.2 kPa for bleed slot design case 7 (Ref. 6). Based on the experiments of Klebanoff and Tidstrom, we thus conjecture that the small (0.37-mm) bubble at 56 kPa does not affect the stability properties of the nozzle wall-boundary layer, but the large (0.71-mm) bubble at 96.6 kPa destabilizes it. 2) Although the Langley tunnel computations displayed reverse flow regions on both walls of the bleed slot lip, the recirculation length is smaller than that seen in the Purdue tunnel computations. In addition, computations that yield separation for the Langley tunnel were performed at a stagnation pressure which is an order of magnitude higher than the stagnation pressures chosen for the Purdue tunnel computations. This might be caused by the position and shape of the bleed slot lip, but the size of the bleed slot lip must also be taken into account. The bleed slot tip diameter is three times smaller for the Langley tunnel. 3) To relate the relative size of the separation bubbles seen on the Langley and Purdue tunnels to the appearance of the premature transition of the tunnel wall boundary layer, an appropriate scaling must be developed.
机译:在这项研究中,对两个停滞压力进行了Purdue隧道泄放槽设计(案例7)的数值分析。对于这两种情况,在排气槽唇的内壁(喷嘴)和外部(排气槽)壁上均观察到再循环气泡。当以相同数量级的停滞压力(96.6 kPa)分析Langley隧道时,未观察到分离气泡。当停滞压力增加一个数量级(1034 kPa)时,在此通道的排放槽唇两侧都观察到反向流动区域。这项研究的主要结论如下:1)对于普渡隧道,我们的结果表明,随着流入停滞压力的增加,在内(喷嘴)壁上形成的再循环气泡变得更大。这提出了仅对于泄放槽设计案例7(参考文献6)仅在55.2 kPa的低停滞压力下观察静流的解释。根据Klebanoff和Tidstrom的实验,我们推测在56 kPa处的小气泡(0.37毫米)不会影响喷嘴壁边界层的稳定性,而在96.6 kPa处的气泡大(0.71毫米)气泡不会影响喷嘴壁边界层的稳定性。使它不稳定。 2)尽管Langley隧道计算在泄放槽唇的两个壁上都显示了逆流区域,但是再循环长度比Purdue隧道计算中的要小。另外,在比停顿压力高一个数量级的停滞压力下进行了兰利隧道的屈服分离计算,该停滞压力比为普渡隧道计算所选择的停滞压力高一个数量级。这可能是由于放气槽唇的位置和形状引起的,但放气槽唇的大小也必须考虑在内。兰利隧道的泄放槽尖端直径小三倍。 3)为了将在兰利和普渡隧道上看到的分离气泡的相对大小与隧道壁边界层过早过渡的外观联系起来,必须制定适当的比例尺。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号