首页> 外文期刊>AIAA Journal >Probabilistic Modeling of Aerothermal and Thermal Protection Material Response Uncertainties
【24h】

Probabilistic Modeling of Aerothermal and Thermal Protection Material Response Uncertainties

机译:空气热和热防护材料响应不确定性的概率模型

获取原文
获取原文并翻译 | 示例
           

摘要

A Monte-Carlo-based methodology is presented for physics-based probabilistic uncertainty analysis of aerothermodynamics and thermal protection system (TPS) material response modeling for aerocapture or direct entry missions. The objective of the methodology is to identify and quantify the most important sources of uncertainty in aeroheating and the resulting thermal protection material selection, design, and sizing based on inaccuracies in current knowledge of the parametric input modeling parameters. The resulting parametric modeling uncertainty would be combined with other uncertainty sources to determine the final aeroheating and TPS response modeling uncertainty for a given application, which can then be used to define appropriate margins and factors of safety that should be applied to the TPS. These techniques facilitate a risk-based probabilistic design approach, whereby the thermal protection system can be designed to a desired risk tolerance, and any remaining risk can be effectively compared to that of other subsystems via a system-level risk mitigation analysis. Modeling sensitivities, which are a byproduct of the uncertainty analysis, can be used to rank input uncertainty drivers. Key input uncertainties can then be prioritized and targeted for further analysis or testing. The strengths and limitations of this technique are discussed. Sample results are presented for two cases: Titan aerocapture and Mars Pathfinder. These cases demonstrate the utility of the methodology to quantify the uncertainty levels, rank sources of input uncertainty, and assist in the identification of structural uncertainties in the models employed.
机译:提出了一种基于蒙特卡洛的方法,用于基于空气动力学或热保护系统(TPS)的航空响应或直接进入任务的材料响应模型的基于概率的概率不确定性分析。该方法的目的是基于对参数输入建模参数的当前知识的不准确性,识别和量化最重要的不确定性来源,包括空气加热以及由此产生的热防护材料的选择,设计和尺寸。由此产生的参数化建模不确定性将与其他不确定性源结合起来,以确定给定应用的最终空气加热和TPS响应建模不确定性,然后可将其用于定义应应用于TPS的适当裕度和安全系数。这些技术促进了基于风险的概率设计方法,从而可以将热保护系统设计为具有所需的风险承受能力,并且可以通过系统级风险缓解分析将任何剩余风险与其他子系统的风险进行有效比较。建模敏感性是不确定性分析的副产品,可用于对输入不确定性驱动因素进行排名。然后可以确定关键输入的不确定性的优先级,并将其作为目标以进行进一步的分析或测试。讨论了此技术的优点和局限性。给出了两种情况的样本结果:Titan航空捕获和火星探路者。这些案例证明了该方法可用于量化不确定性水平,对输入不确定性的来源进行排序,并有助于在所采用的模型中识别结构性不确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号