首页> 外文期刊>AIAA Journal >How the Nozzle Geometry Impacts Vortex Breakdown in Compressible Swirling-Jet Flows
【24h】

How the Nozzle Geometry Impacts Vortex Breakdown in Compressible Swirling-Jet Flows

机译:喷嘴几何形状如何影响可压缩旋流中的涡流破坏

获取原文
获取原文并翻译 | 示例
           

摘要

The influence of the nozzle geometry, namely, the nozzle-wall thickness d and the nozzle length L, on the vortex breakdown of compressible, swirling nozzle-jet flows is numerically investigated. The Reynolds number is set to Re=5000 and the Mach number is Ma=0.6. The nozzle is either in rotation with the mean-flow direction or kept at rest. In a first set of simulations, the nozzle-wall thickness is varied in the range d={0.1,0.15,0.2,0.25}, whereas the nozzle length is kept constant (L=5). For the rotating nozzle wall, the flowfield changes significantly, mainly due to a variation in the initial swirl number and an enhanced centrifugal instability at the outer side of the nozzle wall. For the setup with a nozzle kept at rest, only minor changes of the flowfield are observed in general for a variation of the nozzle-wall thickness. Changing the nozzle length from L=5 to L=7.5, while keeping the wall thickness constant (d=0.1), leads to a shift of the recirculation region downstream for both setups, and a reduction of its radial extent. The helical instabilities developing in the downstream direction within the boundary layers at the nozzle wall reach higher amplitudes for the long nozzles, leading to the observed differences in the configurations downstream of the nozzle. The results presented reemphasize the important role played by the nozzle configuration upstream of the swirling jet for the development of the vortex-breakdown configuration, and contribute to the clarification of the effects of the nozzle geometry.
机译:数值研究了喷嘴几何形状(即喷嘴壁厚d和喷嘴长度L)对可压缩旋流喷嘴流的涡流破坏的影响。雷诺数设置为Re = 5000,马赫数为Ma = 0.6。喷嘴沿平均流方向旋转或保持静止。在第一组模拟中,喷嘴壁厚在d = {0.1,0.15,0.2,0.25}的范围内变化,而喷嘴长度保持恒定(L = 5)。对于旋转的喷嘴壁,流场发生显着变化,这主要是由于初始涡流数的变化以及喷嘴壁外侧处离心力的增强所致。对于喷嘴保持静止的设置,通常只能观察到流场的微小变化,以改变喷嘴壁的厚度。将喷嘴长度从L = 5更改为L = 7.5,同时保持壁厚恒定(d = 0.1),这会导致两种设置的再循环区域向下游移动,并减小其径向范围。对于长喷嘴,在喷嘴壁边界层内沿下游方向发展的螺旋形不稳定性达到较高的振幅,从而导致观察到喷嘴下游构造的差异。提出的结果再次强调了旋流射流上游的喷嘴构型对涡旋破坏构型发展的重要作用,并有助于阐明喷嘴几何形状的影响。

著录项

  • 来源
    《AIAA Journal》 |2015年第10期|2936-2950|共15页
  • 作者

    Luginsland T.;

  • 作者单位

    ETH, Inst Fluid Dynam, CH-8092 Zurich, Switzerland.;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号