首页> 外文期刊>Aerospace science and technology >Hovering efficiency optimization of the ducted propeller with weight penalty taken into account
【24h】

Hovering efficiency optimization of the ducted propeller with weight penalty taken into account

机译:徘徊效率优化导管螺旋桨,考虑重量罚款

获取原文
获取原文并翻译 | 示例
           

摘要

The ducted propeller is superior to the open propeller in hovering efficiency. However, the overall system efficiency of a ducted propeller is reduced due to its heavy structure. If the weight penalty is taken into account, will the ducted propeller still be superior to an open propeller? And in this scenario, how will a ducted propeller with better efficiency than an open propeller be designed? This paper investigates these questions by parametric analysis based on experiments and then parametric optimization that involves hovering efficiency and structural weight in objective functions. Both multi-disciplinary design optimization and multi-objective programming are performed by surrogate-based optimization. An in-house automatic structured mesh generation module is developed to deal with significant geometry variation in design space. Finally, the optimization results are validated by post-optimization experiments. The results of experiment and optimization indicate that the effects of weight penalty play a leading role at low disk loading and hence in this case, the one with lighter structure is superior. But at high disk loading, as thrust gets higher, the leading factor turns into aerodynamic hovering efficiency, therefore the one with higher aerodynamic hovering efficiency prevails. The multi-objective optimization produces an L-shaped Pareto front, and the optimum of multi-disciplinary optimization is quite close to the Pareto front knee point. The designs in this region encounter limited aerodynamic hovering efficiency loss but gain significant weight reduction. Therefore, we can obtain a ducted propeller superior to an open propeller in system efficiency with pretty low disk loading, although the weight penalty is considered. These designs feature a relatively large inner lip radius, a small outer lip radius, and a short or even no diffuser. This means that the inner lip radius contributes the most to the aerodynamic hovering efficiency, followed by the diffuser and outer lip. These designs have very low height to diameter ratio therefore they can be easily integrated into aircraft structure. (C) 2021 Elsevier Masson SAS. All rights reserved.
机译:管道螺旋桨优于悬停效率的开放式螺旋桨。然而,由于其沉重的结构,管道螺旋桨的整体系统效率降低。如果考虑到重量惩罚,请将管道螺旋桨仍然优于开放式螺旋桨吗?在这种情况下,如何设计具有比开放式螺旋桨更好的效率的管道推进器?本文通过基于实验的参数分析来研究这些问题,然后通过参数分析,然后参数优化涉及在客观函数中悬停效率和结构重量的悬停效率和结构重量。多学科设计优化和多目标编程都是由基于代理的优化进行的。开发了一个内部自动结构化网格生成模块,以处理设计空间的显着几何变化。最后,优化结果通过后优化后实验验证。实验和优化的结果表明,重量惩罚的影响在低磁盘装载时发挥着主导作用,因此在这种情况下,具有较轻的结构的较轻。但在高盘装载时,推力变高,前导因素变成空气动力学悬停效率,因此具有更高的空气动力悬停效率的悬浮效率。多目标优化产生L形静脉前线,多学科优化的最佳靠近帕累托前膝关点。该地区的设计遇到有限的空气动力学悬停效率损失,但减少重量显着。因此,我们可以在系统效率上优于开放式螺旋桨,虽然考虑了重量惩罚,但是在系统效率下,可以获得一个开放式螺旋桨。这些设计具有相对较大的内唇半径,小外唇半径,以及短甚至没有扩散器。这意味着内唇半径对空气动力学悬停效率的贡献最大,其次是漫射器和外唇。这些设计具有非常低的高度至直径比,因此它们可以很容易地集成到飞机结构中。 (c)2021 Elsevier Masson SAS。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号