首页> 外文期刊>Aerospace science and technology >Pressure wave damping in transonic airfoil flow by means of micro vortex generators
【24h】

Pressure wave damping in transonic airfoil flow by means of micro vortex generators

机译:借助微涡发生器抑制跨音速翼型流中的压力波

获取原文
获取原文并翻译 | 示例
           

摘要

In transonic airfoil flow, pressure waves are generated mainly at the trailing edge and in the case of a shock in the region of the shock/boundary layer interaction. Depending on the Mach number, these waves lead to oscillating shock waves and an unsteady pressure distribution. For a free steam Mach number of M = 0.76 and a chord length based Reynolds number of Re = 10(6), micro vortex generators (pVG) are applied to dampen pressure waves. This is studied experimentally in a shock tube and numerically by using a high-order finite difference scheme (under-resolved Direct Numerical Simulation). The agreement of the pressure distribution and Schlieren pictures between simulation and experiment is good. By means of numerical visualizations, instability waves are identified within the separated boundary layer above a marginal boundary layer separation bubble. The applicability of VG for dampening the pressure waves and stabilizing the flow field is possible and is studied in this paper. By numerical Schlieren pictures and further visualizations, the flow around the VG is characterized. The spanwise oriented instability waves are partly disintegrated which is also confirmed by the analysis of the vorticity. Finally, the nonlinear wave propagation is investigated and an explanation for the typical 1 to 2 kHz pressure oscillation is given. (C) 2018 Elsevier Masson SAS. All rights reserved.
机译:在跨音速翼型流中,压力波主要在后缘产生,并且在冲击/边界层相互作用的区域中在发生冲击的情况下产生。根据马赫数,这些波会导致振荡的冲击波和不稳定的压力分布。对于自由蒸汽的马赫数M = 0.76和基于弦长的雷诺数Re = 10(6),微涡流发生器(pVG)用于抑制压力波。在减震管中进行了实验研究,并通过使用高阶有限差分方案(欠解析直接数值模拟)进行了数值研究。模拟和实验之间的压力分布和Schlieren图像吻合良好。通过数值可视化,在边际边界层分离泡上方的分离边界层内识别出不稳定波。 VG在阻尼压力波和稳定流场方面的适用性是可能的,并在本文中进行了研究。通过数字Schlieren图片和进一步的可视化,可以表征VG周围的流动。翼展方向的不稳定性波被部分分解,这也通过涡度分析得到了证实。最后,研究了非线性波的传播,并给出了典型的1至2 kHz压力振荡的解释。 (C)2018 Elsevier Masson SAS。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号