首页> 外文期刊>Aerospace science and technology >Accelerated loosely-coupled CFD/CSD method for nonlinear static aeroelasticity analysis
【24h】

Accelerated loosely-coupled CFD/CSD method for nonlinear static aeroelasticity analysis

机译:加速的松耦合CFD / CSD方法用于非线性静态气动弹性分析

获取原文
获取原文并翻译 | 示例
       

摘要

The flexible high-aspect-ratio wings of high-altitude long-endurance unmanned aerial vehicles experience large geometrical deformations. The nonlinear aeroelastic analysis for such a wing is carried out by using a loosely-coupled CFD/CSD method, which treats the fluid and structure as two separate modules and updates the CFD and CSD variables separately with a transfer of variables at the fluid-structure interface. In the loosely-coupled method employed here, an unsteady Euler solver and a nonlinear CSD solver are joined together by a fully three-dimensional integral constant volume tetrahedron (CVT) interfacing technique. The computation process is very time-consuming when the computed incremental displacements of every aerodynamic node on the wing surface are fully added to the previously computed deformed wing configuration. For a maximum deflection of approximately 8.7 mm (0.54% of semi-span length), the coupled computation scheme takes 20 coupling iteration steps with about 72 hours to converge on an HP XW6400 workstation with a 3 GHz Xeon5160 CPU. To reduce the computational expense of this loosely-coupled method, the golden section technique with an empirical parameter is introduced to speed up convergence. The deflections relaxed by using this technique are assimilated, and the wing bends up monotonically to its static equilibrium position with a maximum deflection 44.9 mm. The convergence history shows that, this accelerated algorithm takes just 6 coupling iteration steps with about 24 hours to monotonically converge to its static equilibrium position, although the maximum deflection 44.9 mm is 5 times larger than the maximum deflection 8.7 mm of the above test case with aeroelastic deflections fully assimilated. So, it is employed in the following nonlinear fluid-structure interaction (FSI) computations. After this nonlinear aeroelastic system has reached its static equilibrium position, the aerodynamic loads on wing surface are extracted and then applied onto the linear wing structure to calculate its deformation. In present paper, if the geometric nonlinear effects are taken into account for wing deflection calculation, the wing structure model is named as "nonlinear wing structure"; otherwise, the wing structure model is named as "linear wing structure". The role of geometric nonlinearity on aeroelastic deformation is analyzed by comparing the deformations of linear and nonlinear wing structures. It is shown that, geometric nonlinearity plays an important role for large static aeroelastic deformation and should be accounted for in aeroelastic analyses for such high-aspect-ratio flexible wings.
机译:高空长寿命无人机的柔性高纵横比机翼会经历较大的几何变形。此类机翼的非线性气动弹性分析是通过使用松耦合CFD / CSD方法进行的,该方法将流体和结构视为两个独立的模块,并通过在流体结构处传递变量来分别更新CFD和CSD变量接口。在此处采用的松耦合方法中,非稳态Euler求解器和非线性CSD求解器通过完全三维积分等体积四面体(CVT)接口技术连接在一起。当将机翼表面上每个空气动力学节点的计算出的增量位移完全添加到先前计算出的变形机翼构型时,计算过程非常耗时。对于大约8.7毫米(半跨度长度的0.54%)的最大挠度,耦合计算方案需要20个耦合迭代步骤,耗时约72小时,以收敛于配备3 GHz Xeon5160 CPU的HP XW6400工作站。为了减少这种松耦合方法的计算开销,引入了具有经验参数的黄金分割技术以加快收敛速度​​。吸收了使用此技术放松的挠度,机翼以最大挠度44.9 mm单调弯曲到其静态平衡位置。收敛历史表明,该加速算法仅需6个耦合迭代步骤(约24小时)即可单调收敛至其静态平衡位置,尽管最大挠度44.9 mm比上述测试用例的最大挠度8.7 mm大5倍。空气弹性变形被完全吸收。因此,它被用于以下非线性流固耦合(FSI)计算中。在该非线性气动弹性系统达到其静态平衡位置之后,提取机翼表面的气动载荷,然后将其施加到线性机翼结构上以计算其变形。在本文中,如果考虑机翼挠度的几何非线性影响,则将机翼结构模型命名为“非线性机翼结构”。否则,机翼结构模型被称为“线性机翼结构”。通过比较线性和非线性机翼结构的变形,分析了几何非线性在气动弹性变形中的作用。结果表明,几何非线性对于较大的静态气动弹性变形起着重要作用,并且在这种高纵横比挠性机翼的气动弹性分析中应考虑到这一点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号