首页> 外文期刊>Aerospace science and technology >Reduction of end wall loss in axial compressor by using non-axisymmetric profiled end wall: A new design approach based on end wall velocity modification
【24h】

Reduction of end wall loss in axial compressor by using non-axisymmetric profiled end wall: A new design approach based on end wall velocity modification

机译:通过使用非轴对称异型端壁减少轴向压缩机端壁损失:基于端壁速度修正的新设计方法

获取原文
获取原文并翻译 | 示例
           

摘要

Aircraft axial compressors are commonly designed with high load that generates strong secondary flow and produces high secondary loss. To deal with this problem, profiled end wall has been introduced as a promising technique to reconstruct the end wall flow during the last decade. In this study, we put forward a physics-based approach to design non-axisymmetric profiled end wall which enables researchers to generate the end wall geometry for an arbitrary compressor. The approach is less relying on design experience, much more time-saving than numerical optimization design, but comes to a considerably effective and universal geometry of profiled end wall for performance improvement. A theoretical study is applied to the end wall region at first, during which we proposed a simplified model and established a 6-equation system for the quantitative correlation between the end wall geometry and secondary flow. Then, the new physics-based profiling approach is developed from the theoretical study. By defining a more suitable distribution of end wall velocity as the design target, the corresponding end wall geometry can be solved from the equation system and is expected to modify the end wall flow as the design target. This new approach is used on a high-load compressor cascade to testify its performance, accompanied by two other profiling using the conventional approach and the numerical optimization with the same profiling limitation. A detailed analysis of the cascade, including loss generation and secondary flow, shows excellent influence of the new approach in the front end wall region while negative influence in rear region. The combined effect of the two influences finally reduces the loss by 1.65%, much higher than the conventional approach, which is reduced by only 0.22%, and reaches 73% of the numerical optimization. A further discussion on the relation between the modified end wall velocity and the positiveegative influence of PEW is given and it generally confirmed the physical rationality as well as the effectiveness of the new approach. (C) 2016 Elsevier Masson SAS. All rights reserved.
机译:飞机轴向压缩机通常被设计成具有高负载,从而产生强的二次流并产生高的二次损失。为了解决这个问题,异形端壁已被引入作为一种有前途的技术来重建过去十年中的端壁流动。在这项研究中,我们提出了一种基于物理的方法来设计非轴对称异形端壁,这使研究人员能够为任意压缩机生成端壁几何形状。该方法较少依赖设计经验,比数值优化设计节省更多时间,但是却带来了相当有效且通用的异型端壁几何形状,以提高性能。首先对端壁区域进行了理论研究,在此期间,我们提出了一个简化模型,并建立了一个六方程系统,用于端壁几何形状和二次流之间的定量相关。然后,从理论研究中开发了新的基于物理的分析方法。通过定义更合适的端壁速度分布作为设计目标,可以从方程组中求解相应的端壁几何形状,并有望将端壁流作为设计目标。这种新方法用于高负载压缩机级联以证明其性能,同时还进行了另外两个使用常规方法的性能分析以及具有相同性能限制的数值优化。对叶栅的详细分析,包括损失的产生和二次流,显示了新方法在前端壁区域的出色影响,而在后壁区域的不利影响。两种影响的综合效果最终将损失减少了1.65%,远高于传统方法的损失(仅减少了0.22%),达到了数值优化的73%。进一步讨论了修改后的端壁速度与PEW的正/负影响之间的关系,并且总体上证实了新方法的物理合理性和有效性。 (C)2016 Elsevier Masson SAS。版权所有。

著录项

  • 来源
    《Aerospace science and technology》 |2016年第8期|76-91|共16页
  • 作者单位

    Northwestern Polytech Univ, Sch Power & Energy, Xian 710129, Peoples R China|Collaborat Innovat Ctr Adv Aeroengine, Beijing 100191, Peoples R China;

    Northwestern Polytech Univ, Sch Power & Energy, Xian 710129, Peoples R China;

    Northwestern Polytech Univ, Sch Power & Energy, Xian 710129, Peoples R China;

    Northwestern Polytech Univ, Sch Power & Energy, Xian 710129, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号