首页> 外文期刊>The Aeronautical Journal >An efficient method for predicting zero-lift or boundary-layer drag including aeroelastic effects for the design environment
【24h】

An efficient method for predicting zero-lift or boundary-layer drag including aeroelastic effects for the design environment

机译:一种用于预测零升力或边界层阻力的有效方法,包括设计环境的气动弹性效应

获取原文
获取原文并翻译 | 示例
           

摘要

One of the aerospace design engineer's goals aims to reduce drag for increased aircraft performance, in terms of range, endurance, or speed in the various flight regimes. To accomplish this, the designer must have rapid and accurate techniques for computing drag. At subsonic Mach numbers drag is primarily a sum of lift-induced drag and zero-lift drag. While lift-induced drag is easily and efficiently determined by a far field method, using the Trefftz plane analysis, the same cannot be said of zero-lift drag. Zero-lift drag (C-D,C-0) usually requires consideration of the Navier-Stokes equations, the solution of which is as yet unknown except by using approximate numerical techniques with computational fluid dynamics (CFD). The approximate calculation of zero-lift drag from CFD is normally computed with so-called near-field techniques, which can be inaccurate and too time consuming for consideration in the design environment. This paper presents a technique to calculate zero-lift and boundary-layer drag in the subsonic regime that includes aeroelastic effects and is suitable for the design environment. The technique loosely couples a two-dimensional aerofoil boundary-layer model with a 3D aeroelastic solver to compute zero-lift drag. We show results for a rectangular wing (baseline), a swept wing, and a tapered wing. Then compare with a rectangular wing with variable thickness and camber, thinning out from the root to tip (spanwise direction), thus demonstrating the practicality of the technique and its utility for rapid conceptual design.
机译:航空航天设计工程师的目标之一是减少阻力,以提高航空器在各种飞行状态下的航程,耐力或速度方面的性能。为此,设计人员必须具有快速而准确的计算阻力的技术。在亚音速马赫数下,阻力主要是升力引起的阻力和零升程阻力的总和。尽管通过远场方法可以轻松有效地确定升力引起的阻力,但使用Trefftz平面分析却不能说零升力。零升力阻力(C-D,C-0)通常需要考虑Navier-Stokes方程,除了使用近似数值技术和计算流体动力学(CFD)之外,其解决方案尚不清楚。通常使用所谓的近场技术来计算CFD产生的零升力阻力的近似值,这在设计环境中可能不准确且耗时。本文提出了一种在亚音速状态下计算零升力和边界层阻力的技术,该技术包括气动弹性效应,适用于设计环境。该技术将二维机翼边界层模型与3D气动弹性求解器松散地耦合在一起,以计算零升力阻力。我们显示了矩形机翼(基线),后掠机翼和锥形机翼的结果。然后将其与具有可变厚度和外倾角的矩形机翼进行比较,从根部到尖端(展向方向)变薄,从而证明了该技术的实用性及其在快速概念设计中的实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号