首页> 外文期刊>Advances in Water Resources >Petrophysical characterization of deep saline aquifers for CO_2 storage using ensemble smoother and deep convolutional autoencoder
【24h】

Petrophysical characterization of deep saline aquifers for CO_2 storage using ensemble smoother and deep convolutional autoencoder

机译:使用集合光滑和深卷积自动化器的CO_2储存的深盐含水层的岩石物理学表征

获取原文
获取原文并翻译 | 示例
           

摘要

Carbon dioxide sequestration in deep saline aquifers requires accurate and precise methods to monitor carbon capture and storage and detect leakage risks. The assessment of the CO2 plume location during injection and storage depends on the accuracy of the spatial distribution model of petrophysical properties, such as porosity and permeability. This work focuses on stochastic methods for petrophysical characterization and presents a method for the prediction of porosity and permeability using borehole observations and surface geophysical data. This study utilizes injection and monitoring measurements at the borehole locations and time-lapse seismic surveys. The proposed method is based on a stochastic approach to inverse problems with data assimilation, namely the ensemble smoother with multi-data assimilation. Ensemble-based methods are generally unfeasible when applied to large geophysical datasets, such as time-lapse seismic surveys. In the proposed approach, a machine learning method, namely the deep convolutional autoencoder, is applied to reduce the dimension of the seismic data. The ensemble smoother is then applied in a lower dimensional data space to predict the aquifer petrophysical properties. This method updated predictions of porosity and permeability every time new data, either seismic surveys or borehole data, are available, to reduce the uncertainty in the CO2 plume prediction. The method is tested and validated on a synthetic geophysical dataset generated for the Johansen formation, a potential large-scale offshore site for CO2 storage.
机译:深盐含水层中的二氧化碳封存需要准确和精确的方法来监测碳捕获和储存并检测泄漏风险。注射和储存期间CO2羽流定位的评估取决于岩石物理性质的空间分布模型的准确性,例如孔隙率和渗透性。这项工作侧重于岩石物理表征的随机方法,并呈现使用钻孔观测和表面地球物理数据预测孔隙率和渗透性的方法。该研究利用钻孔位置的注射和监测测量和时间流逝地震调查。该方法基于对数据同化逆问题的随机方法,即与多数据同化的集合光滑。基于集合的方法通常是不可行的,当应用于大型地球物理数据集时,例如时间流逝地震调查。在所提出的方法中,应用机器学习方法,即深卷积自动化器,用于减少地震数据的尺寸。然后将该集合光滑施加在较低的尺寸数据空间中以预测含水层的岩石物理特性。该方法更新了每次新数据,抗震调查或钻孔数据的孔隙度和渗透率的预测,以减少CO2羽流预测的不确定性。该方法在为Johansen Chordation生成的合成地球物理数据集上进行测试和验证,是CO2存储的潜在大型近海站点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号