首页> 外文期刊>Advances in Water Resources >A three-dimensional numerical method of moments for groundwater flow and solute transport in a nonstationary conductivity field
【24h】

A three-dimensional numerical method of moments for groundwater flow and solute transport in a nonstationary conductivity field

机译:非稳态电导率场中地下水流动和溶质运移的三维数值方法

获取原文
获取原文并翻译 | 示例
           

摘要

A three-dimensional numerical method of moments has been developed for solute flux through nonstationary flows in porous media. The solute flux is described as a space-time process where time refers to the solute flux breakthrough and space refers to the transverse displacement distribution at a control plane. Flow nonstationarity may stem from various sources, such as the medium's conductivity nonstationarity and complex hydraulic boundary conditions. The first two statistics of solute flux are derived using a Lagrangian framework and are expressed in terms of the probability density functions (PDFs). These PDFs are given in terms of one- and two-parcel moments of travel time and transverse locations, and these moments are related to the Eulerian velocity moments. The moment equations obtained analytically for flow and transport are so complex that numerical techniques are used to obtain solutions. In this study, we investigate the influence of various factors, such as the grid resolution relative to correlation length and the number of solute parcels comprising a source, on the accuracy of the calculation results. It has been found that for the computation of means and variances using the developed moment equations, hydraulic head requires at least one numerical grid element per correlation length scale. At least two grid elements are required for velocity, and 1-2 grid elements for the solute flux variance. Five parcels are required per correlation length scale to approximate the initial solute source distribution. The effects of boundary and hydraulic conductivity nonstationarity on flow and transport are also considered. Flow nonstationarity caused by either hydraulic boundary condition or conductivity nonstationarity significantly influences the transport process. The calculation results of numerical method of moments are compared with Monte Carlo simulations. The comparison indicates that the two methods are consistent with each other for head variance, velocity covariance in longitudinal direction, and mean and variance of total solute flux, but numerical method of moment underestimates the velocity variance in transverse direction. The method is applied to an environmental project for predicting the solute flux in the saturated zone below the Yucca Mountain project area, demonstrating the applicability of the method to complex subsurface environments.
机译:针对多孔介质中非稳态流动的溶质通量,开发了一种矩量的三维数值方法。溶质通量被描述为时空过程,其中时间是指溶质通量突破,空间是指控制平面上的横向位移分布。流动非平稳性可能来自多种来源,例如介质的电导率非平稳性和复杂的水力边界条件。溶质通量的前两个统计量是使用拉格朗日框架得出的,并以概率密度函数(PDF)表示。这些PDF是根据行进时间和横向位置的一包和两包力矩给出的,这些力矩与欧拉速度力矩有关。通过解析获得的流动和运输矩方程非常复杂,以至于使用数值技术来获得解。在这项研究中,我们研究了各种因素对计算结果准确性的影响,例如相对于相关长度的网格分辨率和组成源的溶质包裹的数量。已经发现,为了使用发展的力矩方程来计算均值和方差,液压头每个相关长度标度至少需要一个数字网格元素。速度至少需要两个网格元素,溶质通量方差至少需要1-2个网格元素。每个相关长度范围需要五个包裹,以近似初始溶质源分布。还考虑了边界和水力传导率的非平稳性对流动和运输的影响。由水力边界条件或电导率非平稳性引起的流动非平稳性会严重影响运输过程。将矩量法的计算结果与蒙特卡洛模拟进行了比较。比较表明,这两种方法在磁头方差,纵向速度协方差,总溶质通量的均值和方差方面是一致的,但是矩的数值方法低估了横向速度的方差。将该方法应用于预测尤卡山项目区以下饱和带中的溶质通量的环境项目,证明了该方法对复杂地下环境的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号