首页> 外文期刊>Advances in Water Resources >Uncertainty based modeling of rainfall-runoff: Combined differential evolution adaptive Metropolis (DREAM) and K-means clustering
【24h】

Uncertainty based modeling of rainfall-runoff: Combined differential evolution adaptive Metropolis (DREAM) and K-means clustering

机译:基于不确定性的降雨径流建模:组合差分进化自适应大都市(DREAM)和K-均值聚类

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Simulation of rainfall-runoff process in urban areas is of great importance considering the consequences and damages of extreme runoff events and floods. The first issue in flood hazard analysis is rainfall simulation. Large scale climate signals have been proved to be effective in rainfall simulation and prediction. In this study, an integrated scheme is developed for rainfall-runoff modeling considering different sources of uncertainty. This scheme includes three main steps of rainfall forecasting, rainfall-runoff simulation and future runoff prediction. In the first step, data driven models are developed and used to forecast rainfall using large scale climate signals as rainfall predictors. Due to high effect of different sources of uncertainty on the output of hydrologic models, in the second step uncertainty associated with input data, model parameters and model structure is incorporated in rainfall-runoff modeling and simulation. Three rainfall-runoff simulation models are developed for consideration of model conceptual (structural) uncertainty in real time runoff forecasting. To analyze the uncertainty of the model structure, streamflows generated by alternative rainfall-runoff models are combined, through developing a weighting method based on K-means clustering. Model parameters and input uncertainty are investigated using an adaptive Markov Chain Monte Carlo method. Finally, calibrated rainfall-runoff models are driven using the forecasted rainfall to predict future runoff for the watershed. The proposed scheme is employed in the case study of the Bronx River watershed, New York City. Results of uncertainty analysis of rainfall-runoff modeling reveal that simultaneous estimation of model parameters and input uncertainty significantly changes the probability distribution of the model parameters. It is also observed that by combining the outputs of the hydrological models using the proposed clustering scheme, the accuracy of runoff simulation in the watershed is remarkably improved up to 50% in comparison to the simulations by the individual models. Results indicate that the developed methodology not only provides reliable tools for rainfall and runoff modeling, but also adequate time for incorporating required mitigation measures in dealing with potentially extreme runoff events and flood hazard. Results of this study can be used in identification of the main factors affecting flood hazard analysis. (C) 2015 Elsevier Ltd. All rights reserved.
机译:考虑到极端径流事件和洪水的后果和破坏,模拟城市降雨径流过程非常重要。洪水灾害分析中的第一个问题是降雨模拟。事实证明,大规模的气候信号在降雨模拟和预报中是有效的。在这项研究中,考虑到不确定性的不同来源,为降雨径流模型开发了一个综合方案。该方案包括降雨预报,降雨径流模拟和未来径流预测三个主要步骤。第一步,开发数据驱动模型并将其用于使用大规模气候信号作为降雨预报器来预报降雨。由于不确定性的不同来源对水文模型输出的巨大影响,第二步,与输入数据,模型参数和模型结构相关的不确定性被纳入降雨-径流建模和模拟中。为了考虑实时径流预报中模型概念(结构)的不确定性,开发了三种降雨径流模拟模型。为了分析模型结构的不确定性,通过开发基于K-means聚类的加权方法,将替代降雨-径流模型产生的水流进行合并。使用自适应马尔可夫链蒙特卡洛方法研究模型参数和输入不确定性。最后,使用预测的降雨来驱动校准的降雨径流模型,以预测流域的未来径流。该提议的方案被用于纽约市布朗克斯河流域的案例研究。降雨径流模型的不确定性分析结果表明,同时估算模型参数和输入不确定性会显着改变模型参数的概率分布。还观察到,通过使用提出的聚类方案组合水文模型的输出,与单个模型的模拟相比,流域中径流模拟的准确性显着提高了50%。结果表明,所开发的方法不仅为降雨和径流建模提供了可靠的工具,而且为将所需的缓解措施纳入潜在的极端径流事件和洪水灾害提供了足够的时间。这项研究的结果可用于识别影响洪水灾害分析的主要因素。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号